Measuring the Effectiveness of Error Messages
Designed for Novice Programmers

Guillaume Marceau
WPI
100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

gmarceau@wpi.edu

ABSTRACT

Good error messages are critical for novice progrars. Re-
cognizing this, the DrRacket programming environtrenovides
a series of pedagogically-inspired language subwitts error
messages customized to each subset. We apply Hiactans
research methods to explore the effectivenessesietimessages.
Unlike existing work in this area, we study message a fine-
grained level by analyzing the edits students niakesponse to
various classes of errors. We present a rubridgcfwis not lan-
guage specific) to evaluate student responsesy &ppla course-
worth of student lab work, and describe what weeharned
about using the rubric effectively. We also discasme concrete
observations on the effectiveness of these messages

Categories and Subject Descriptors K.3.2 [Computer and Edu-
cation]: Computer and Information Science Educati@omputer science
education; H.5.2 [User Interfaces]: Evaluation/Metblogy

General Terms Experimentation, Human Factors

Keywords Error messages, Novice programmers, User-studies

1. INTRODUCTION

In a compiler or programming environment, error sages are
one of the most important points of contact betwten system
and the programmer. This is all the more criticatdols for no-
vice programmers, who lack the experience to deciglompli-
cated or poorly-constructed feedback. Thus, masgaieh efforts
have sought to make professional compilers moréalslei for
teaching by rewriting their error messages [10supplementing
them with hints and explanations [3]. Such effatenplement
more general research on improving error messageméans
such as error recovery during parsing.

DrRacket [5] goes farther.
around what students have learned at differentest§®]. Each
sublanguage provides only (versions of) those coost that

! Formerly known as DrSchemem. dr r acket . or g

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without fegiged that copies are
not made or distributed for profit or commercialadtage and that cop-
ies bear this notice and the full citation on thistfpage. To copy other-
wise, or republish, to post on servers or to rebiste to lists, requires
prior specific permission and/or a fee.

SIGCSE’'11 March 9-12, 2011, Dallas, Texas, USA.

Copyright 2011 ACM 978-1-4503-0500-6/11/03...$00.0

Kathi Fisler
WPI
100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

kfisler@cs.wpi.edu

It defines several sublanguages

Shriram Krishnamurthi
Brown University
115 Waterman St
Providence, RI, USA
+1 (401) 863-7600

sk@cs.brown.edu

make sense at that point, and similarly custongzesr messages.
The levels and messages have evolved over a detateserva-
tion in lab, class, and office settings.

Despite this care, we still see novices struggleddk effectively

with the messages. To understand why, we loggetests’ edits

in response to errors over an entire college-léngbductory

course and coded whether the edits reflected utzaheling of the

error message. Our work is novel in using finergd data about
edits to assess the effectiveness of individualsela of error mes-
sages. Our coding rubric for assessing the peefocm of error
messages through edits is a key contribution & Work. Our

observations about how to use the coding resultsftect on our

course is another. Finally, we also present soomerete obser-
vations on how students respond to these messages.

2. RESPONSES TO ERROR MESSAGES

We begin by showing a few examples of student nesg® to
error messages during Lab #1. When Lab #1 begiost stu-
dents have not had any contact with programmingieyfour
hours of course lectures given in the days befo tavo short
homeworks due the day before and evening aftelathe

Figure 1 (a) shows one function (excerpted fronam@dr pro-

gram) submitted for execution 40 minutes afterstaet of the lab.
The student is defining a functidrabel , with one argument
nane. Most likely the student is missing a closing péihesis

afternanme, and another one afteconservati ve". The nesting
suggests that the student is struggling to remerhberto com-

bine two Boolean tests into one using theoperator. DrRacket
provides a textual message (lower pane) and higtsligpink in

upper pane) a code fragment that triggered the.erro

Figure 1 (b) shows the student’s next edit. Thelestt inserted
nane as an argument to the function callsta i ng=?. An ambi-
guity in the error message might have promptedrtfisgake: the
word “function” in the fragment “for the functionsecond argu-
ment” can refer to either the function being dedirfeabel) or
the function being calleds(ri ng=?). DrRacket means the for-
mer, but the student seems to have inferred ther I§perhaps
influenced by the highlighting). Our dataset ilhasés several
situations in which the association of the hightlighthe error text
is underspecified.

As another example, Figure 2 shows a sequenceogfams that
each triggered the same error message. The tograggiam was
submitted first; what follows are the student'sffifour attempts
to correct the problem. The student never idestifiee actual
problem, which is a missing open parenthesis befloeecond.

The entire sequence lasts 10 minutes, until theoénlle lab ses-

(a)
=lofx
Gle Edt Vew language Sthems [nsert Help
labl.ss > (define) Save ko Stop &l Record E3 Check Syrkax @ Fun A7 stop @)
define (label 1
(string=? "“consel ive"
(string=2 "“liberal"))
. =
Welcome to DrScheme, version 4.2.2 [3m]. =
Language: Beginning Student; memory limit: 128 2
megabytes.
'_I‘ L = : = L '_ e
L4
> . _I
Bepneing Studert ¥ 43 § logging tool off
(b)
{define (label name
(string="7 wklilg "conservative
(string=2 name "liberal™))))

Figure 1. (a) A student's program and itserror message
(b) The student's response to the error messa

sion. A few weeks later, whehe student participated an inter-
view, he mentionetiow frustrating the experience had b

Even with our years of experience teaching vDrRacket, the
state of the programs we collected was often ssingij if not
humbling. Students manage to create quite mangled funct
which the error messages mastempt to help them sort ¢

3. METHODOLOGY

In the spring of 2010, we ran a studyW®PI’s introductory po-
gramming course. We configured DrRacketsave a copy
each program eac$tudent tried to run, as well as the errois-

sage received (if any) plus any keystrokes the student pressed

in response to the error message, up to their aigampt at rn-
ning the program. We collected data during the sglsrnorma
lab sessions, which ran for 50 minugsr week for six week
(undergrad courses at WPI are 28 hour-ltegiLres over seven
weeks, so the data cover the entire course). Duains, student
worked on exercises covering rectatture material

Of the 140 students in the course, 64 agreed ticimate in this
data collection and 53 actually submitted daWe did not ask
participantsfor demographics such as intended majors, but |
than a third of the overall course population tisteajors othe
than computer scienceStudent participation dropped to 2:u-

dents by the final week as a result of studeh&nging lab sea
and not reinitializing the software at their newatisns; no wu-

dents withdrew from the study.

4. THE DESIGN OF A CODING RUBRIC

There are many ways one might study the effectiserd errol
messages. A common approach in the literatureefdswed in
Section 7) is to change the messagegheir presentation ar
compare the impact on student grades at the enbleo€ourse.
We are interested in a more figeained analysis that determir
which error messages are effective and in what waysre is no

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
cond [(and (string=? check-for-match stringOne))]
[(and (string=? check-for-match stringTwo))])

define: ex pected only one expression for the function body, b ut
found at least one extra part

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
cond [(string=? check-for-match stringOne)]
[(and (string=? check-for-match stringTwo))]
[(and (string=? check-for-match stringThree))])

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
cond [and ((string=? check-for-match stringOne))]
[(and (string=? check-for-match stringTwo))]
[(and (string=? check-for-match stringThree))])

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
cond [(string=? check-for-match stringOne)]

[(string=? check-for-match stringTwo)]

[(string=? check-for-match stringThree)])

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
cond [(string=? check-for-match)]

[(string=? check-for-match stringTwo)]

[(string=? check-for-match stringThree)])

Figure 2. A sequence of responses to an errmessage

single metric for “effectivenessdf an error messa. Possible
metrics include whether studemtsmonstratlearning after work-
ing with messages owhether the messages help novico-
grammers emulate expertdVe have chosen a narrower met
does the student make a reasonable ec judged by an expe-
rienced instructor, in response to #reor messag

To gain confidence that our metaod its application to owdata
were valid, we developed a formaibric for assessing edits and
subjected it to a test afiter-coder reliability [2] (where “coder”
is the standard term for one who applies a ruloridata.> Inter-
coder reliability tests whether a rubric can beli@ppobjectively:
multiple coders independently appfyto data, measure their con-
sistency, then rewvis the rubric until sufficient consistency
achieved. After describingow our rubric evolve, we present
the standard measurement of inteder reliability that we used.

Our rubric attempts to distinguish ws in which error messages
succeed or fail. Our design starts from a conadphodel of how
error messages intend to help studeif an error message is ef-
fective, it is because a student re#dean understand its mean-
ing, and can then use the infation to formulate a useful cour
of action. This is a three step sequence

Read » Understand » Formulate

Students can get stuck at any of these stOne interesting ques-
tion is whether students get stuck earlier in tegquence witt
particular kinds of errors. Texplore thi, we would ideally like a
rubric that identifies how far a studesuccessfully went in the
sequence when responding to a given error me: This would
suggest a rubric with at least four categorifailure-on-read,
failure-on-understand, failure-dofrmulate, and fixe-the-error.
Our initial attempts to distinguish failt-on-read from failure-on-
understand were not succesdiual that we could ot achieve in-
ter-coder reliability) Our recordings of student editing sessi
lack attention-based data (such eg-tracking) that indicate
where a student looked or reacted when an erraurgem; such
data might have helped distinguish between- and understand-
failures. We concluded that a more realistic rubric wocom-

! This paper uses “coder” exclusively as a s-science term:; in
particular, “coder” never refers to programm

The rubric should assess the performance of the esr mes-
sages, not the studentsConsider a situation in which a student’s
edit corrects a problem that had nothing to do wlth original
error message. While this is a positive outcormepges not ad-

dresses a different error or makes progress in some dress our primary concern of how effective errossages are at

[DEL] Deletes the problematic code wholesale.
[UNR] Unrelated to the error message, and doeseipt

[DIFF] Unrelated to the error message, but it ecily ad-
other way.

[PART] Evidence that the student has understo@dettor
message (though perhaps not wholly) and is trying
to take an appropriate action (though perhaps not
well).

[FIX] Fixes the proximate error (though othernging

errors might remain).
Figure 3. Rubric for responses to error messages

bine failure-on-read and failure-on-understand atsingle cate-
gory separate from failure-on-formulate.

Figure 3 presents our final rubric for assessinglestts’ edits.
The [UNR] and [PART] codes capture failure-on-resdierstand
and failure-on-formulate, respectively. All thespenses in the
sequence shown in Figure 2 were coded [UNR], fangle,
since none of the edits tried to change the nurabearts in the
function body position of theef i ne, and nothing else suggested
that the student had read or understood the message

Earlier versions of our rubric attempted to discevo nuances of
failure-on-understand: failure to understand thd &s separate
from failure to understand what the messagelly means in

terms of the code. An error message can use simplds and

simple grammar but still be hard to understand bsedhe under-
lying problem is difficult or because the messagadequately
describes the problem. Responding to these ergssages re-
quires students to read beyond the words and uladershat

“when DrRacket says X, it really means Y”. Figureshows an
example. On its face, the message contradictdetkieof the

code: there definitely is a parenthesis beforeatts To under-

stand the message, one has to realize that thatpasés before
theand has been attributed to thend; in the parser’s view, the
and stands on its own without a parenthesis. Predigtéiie stu-

dent failed to formulate a useful response to thessage (they
deleted the parenthesis before tinel). Early versions of the ru-
bric tried to capture how often students faileddomulate a re-
sponse according to the deep meaning of the megsdge an

expert would understand from the message) becdese vwere

being misled by its literal meaning. However, cadarere not
sufficiently reliable when making these distincprand so the
final rubric has only one code corresponding taikuife to formu-

late, namely [PART].

For the remaining codes in Figure 3, [DEL] capturases when
students simply deleted error-inducing code rathan attempting
to fix it, [DIFF] captures edits that were usefultlunrelated to the
reported error (such as fixing a different errorasiding more
code or test cases), and [FIX] captures successfubletion of
the read/understand/formulate sequence. Theses aue their
precise wordings reflect several design decisibas arose while
developing the rubric:

guiding students through the read/understand/fatadequence.
Similarly, students may experience difficultiestwjiroblem solv-
ing or program design that should not be attributeghortcom-
ings of the error messages. To keep our codingskd on the
error messages, we include the [DIFF] code foraeakle edits
unrelated to the proximate error. Unreasonablts edirelated to
the proximate error are coded [UNR]. Our firstrialtesign had
unified [DIFF] and [UNR]; we split them after codsring when
the error message could be held accountable. $ueststu-
dents simply avoid the proximate error by deletingjr code (for
example, deleting a test case that yields an erfbo)avoid judg-
ing the error message (as [UNR] might), we intreglithe sepa-
rate [DEL] code for such cases. When deletiomésappropriate
action (e.g., when removing an extra function argothand it is
performed on a reasonable code fragment, we coake [PART]
or [FIX] as appropriate. Together, [DIFF] and [DElharacterize
situations in which the student’s action providesimformation
about the quality of the error message.

Coding decisions have to be made narrowhstrictly in relation

to the proximate error described in the messageabket reports
only one error at a time. Fixing the problem meméd in the

message sometimes makes the overall code worsex@onple, a
student might delete an extra expression rather éldd an opera-
tor to combine it with the rest of the code). FRreqtly, an edit
fixes the error mentioned but leaves other glaen@rs in sur-
rounding code untouched. We nevertheless code edith as

[FIX]. [FIX] implies neither mastery on the part tife student nor
oracular accuracy on the part of the messaganitlgimeans that
the student formulated a reasonable response fortiéem men-
tioned in the message. The text “though other ammpgerrors

might remain” reminds coders to take this narroterpretation.

In practice, our coders needed the explicit remirtdebe self-

consistent in applying [FIX].

Coding needs a holistic view of multi-faceted erromessages.
DrRacket’s error messages have two componentsateks high-
light. In assessing whether a student had “readUnderstood”
an error message, we had to decide whether edititign the

highlighted expression sufficed (even if the edibwed no evi-
dence of understanding the text). Some studeatgglfirst at the
highlight for a quick overview of the error; thisauild be a credit
to the error message, even though we have a biasde the text
when assessing “understanding”. At the same tatoglents often
made random edits in the highlighted code that wegiably
unrelated to the proximate error. We ultimatelgided that loca-
tion was not sufficient justification for ascribifi@ART] or [FIX].

We accepted liberally any evidence that the studesd and un-
derstood something from the message. In some ,casdsng

this determination required human judgment or teertexpe-

rience, as was the case with the “expect a namafhple in Fig-

ure 1. Because we decided that the student prolgaitlthe idea
of inserting “name” from having read the words “exfed a
name” in the message, we coded that response [PAR1gr than
[UNR]. We found such subjective decisions surpgsi consis-
tent across the coders.

(define (Ilabel-near? name bias wordl word2 word3)
(cond
(and (cond [(string=? nane wordl) "Nane Located"]
[(string=? bias wordl) "Bias Located"])
(cond [(string=? name word2) "Nanme Located"]
[(string=? bias word2) "Bias Located"])
" Mar k")

))

& and: found a use of “and' that does not follow an
open parenthesis

Figure 4. A counterfactual error message

During the design process, we also ruled out ideasfailed to
survive inter-coder reliability tests or our owra&ation:

e Distinguishing [FIX] codes based on elapsed time
considered factoring in students’ response timédying
separate codes for “fixed with hesitation” and éfikwith-
out hesitation” (we have timestamp data on allsedind
can replay editing sessions at their original pacéh
theory, errors to which students respond more siowl
might be harder for students to process. We utéhma
ruled this out for two main reasons. First, respotisie
could be affected by corrupting interferences (sasha
student taking a bathroom break or differencesadnkimg
styles across students). Second, we lacked a geidc
for the expected difficulty of each error messagighout
that, we would not be able to identify messages weae
performing worse than expected.

* Considering whether the edit yielded a new errossage
as a criterion for [FIX]: this is a corollary to our observa-
tion about coding narrowly. In practice, we fowsabes in
which the student really did fix the error, but haatle of
such a form that the same error applied after thie &Ve
chose to ignore this criterion in final coding.

The rubric as shown in Figure 3 meets standardstef-coder
reliability on the data from Lab #1. We used ttandard metric
of inter-coder reliability [2]x, which is defined as

_ Agreement — Expected Agreement

1 — Expected Agreement

k compares the agreement of the human coders tagieement
that would be expected by chance according to @ugimal prob-
abilities. Because of this, it is a more demandimgric than the
simple proportions of the number of times the cedgreed. Val-
ues ofk usually lie within 1.0 (meaning perfect agreemeantji
0.0 (meaning agreement exactly as good as woukkpected by
chance), but values &fcan be negative if the human coders per-
form worse than chance. We executed this testtef-toder re-
liability on each version of the rubric. The fimaérsion of the
rubric (the one shown in Figure 3) was the firgisi@n which met
thex > 0.8 standard, with = 0.84 on 18 different responses.

5. APPLYING THE RUBRIC

Our rubric is designed to identify error messadest students
respond to poorly. Given that multiple error messagan reflect
the same underlying problem, we group messagesnint® the-
matically-related categories, such as “parenthemaching”,

“syntax of define”, and “runtime type”. For eacb| we sampled

15 edits per category (a sufficient size for staté validity) and
coded each against the rubric in Figure 3. We ##édal, et al.’s
edit-replay software [14] to replay programs dur@egling.

Table 1 shows the results of coding for the 9 ncoshmon error
categories (the categories not shown occurred raBly.) The
top row shows the number of errors an average stugeeived
during each lab®€). The sub-table for each lab shows the percen-
tage of the error messages presented during thahé were of
the given category*p,.); the percentage of error messages in the
category that were badly responded to accordingutocoding
(*B,.); and an estimate of the number of errors in tzegory
that each student responded to poorly during theTlhis estimate

is the product of the preceding three values:

0, 0,
#Bl,c = #Ez : A)Pl,c' A)Bz,c

When computing each variable for the table, we ayeracross
students to avoid due influence by the few studedis compile
much more frequently than the average. For instaneecompute
%p,. by first taking the ratio ofUNR] + [PART] against the de-
nominator[UNR] + [PART] + [FIX] per individual student. Spe-
cifically, for studens, lab,l, and categorg, we compute:

%B,,. = ([UNR] + [PART])/([UNR] + [PART] + [FIX])

Then we take the unweighted average across thederss who
are represented in the selected samples:

%Bl,c = (Z %Bs,l,c)/n

The bar to the right of #bad in each cell indicates relative

magnitude of #bad values within that lab. Thel&dderror-class
combinations with the highest number of poor respsrappear in
boxes. The sum of the #bad estimates within eagl{under the
table) indicates the total estimated number ofrertioat a student
would make in that lab. By this measure, we expestudent to
respond poorly to 3.16 errors in Lab #1 and 5.5arerin Lab #2.

While these may seem small out of context, 5.5arern 50 mi-

nutes translates to a poorly-handled error meseagey 10 mi-

nutes. Worse, this is an average, so the frequisneyich higher
for some students.

In interpreting the data, we are interested indéks with boxes
(suggesting the highest likelihood of recurrenca general popu-
lation) and the cells with the highest %bad val(®sggesting
errors which were highly problematic for perhapsrall number
of students).

We are particularly interested in interventionstth@ght help
students at the very beginning of the course (vdtaedents form
their first impressions of programming and may etecdrop the
course). Within Lab #1, syntax errors (includingaten match-
ing”) dominate the problematic cases. Based beradata (from
interviews with students and a vocabulary quiz), veee good
reason to suspect problems with the highlights @wedvocabu-
lary. Due to space constraints, we defer discussfahese find-
ings to follow-up papers that report on intervensio

Lab #2 contains four of the ten boxes; studentsggted most
with the messages in this lab. This might be etqub@s students
confront many new syntactic constructs and concieptie pre-
ceding week. However, the boxes occur in somewtigirising

Lab number #1 #2 #3 #4 #5 #6
of errors a student
received during this lab| 8.5 16.3 14.4 9.0 9.8 9.8
(onaverage)

%error %bad #bad %error %bad #bad %error %bad #bad %error %bad #bad %error %bad #bad %error %bad #bad
arg. count 5% 48% 022 || 17% 27% - 14% 17% 033 W 13% 20% 024 W 35% 21% - 12% 31% 036 M
parens matching | 28% 24% 053 Wl | 12% 14% 027 W 17% 0% 0.00 14% 0% 0.00 13% 0% 0.00 10% 15% 0.15 1
runtime cond 3% 0% 0.00 3% 100% 0.49 1M 4% 20% 0.12 | 6% 72% 0.40 M 8% 78% - 1% 100% 0.06 |
runtime type 2% 100% 0.15 1| 8% 73% - 16% 40% - 8% 22% 017 I 6% 44% 026 W 3% 38% 013 1
syntax cond 14% 51% 0.59 [l 4% 50% 031 W 6% 26% 024 1 10% 28% 0.25 B 9% 20% 017 U 1% 11% 012 |
syntaxdefine | 16% 50% [0.68 |MM | 14% 50% [114 [N 6% 15% 0.14 | 7% 24% o0.14 1 2% 17% 0.03 | 3% 38% o0.10 |
syntaxfunc.call | 14% 64% (074 (M | 14% 17% 037 W 12% 14% 0.26 N 2% 27% oss Bl | 4% 29% 012 | 13% 38% 0.48 Il
syntax struct 0% 0% 0.00 8% 32% 043 M 5% 92% - 0% 0% 0.00 1% 0% 0.00 0% 0% 0.0
unbound id. 16% 16% 021 1 13% 40% [0.85 W | 16% 14% 0.32 W 16% 0% 0.00 20% 7% 014 | 34% 13% 044 M
Total: 3.16 5.51 3.07 1.75 2.07 1.84

Table 1. Coding results.

categories (e.g., argument count and unbound faatimanual
inspection of the data for those cells might ptarthe problems.

Most of the boxes occur in the first three weeR$is would be
consistent with students improving at error hargllirHowever,
curricular aspects of the labs also affect errdtepas across cells.
For example, the “arg(ument) count” errors in L&b thace to
mistakes students made while definmgry tree data. Construct-
ing n-ary trees requires nesting lists inside of stregustudents
often close expressions for multiple branches iremtly while
nesting calls to the constructors. Understandimg dontext in
which a class of errors becomes problematic iscatito design-
ing good interventions based on this data.

It is tempting to interpret these graphs as indicatstudents’
conceptual difficulties in the course. This interpretation is

invalid because the erratessagé¢hat a student sees is often not a

direct indicator of the underlyingrror. For instance, Lab #6 had
numerous “unbound-id” errors, but a careful mananhlysis
revealed that many of them were from students ipgnly using
structures (e.g., using field reference operataesriectly in vari-
ous ways), not merely being bad typists. To furtbenfound
matters, the precise error that is shown is a fanodf parsing
strategies, because many invalid expressions cafiagged in
multiple ways. Therefore, an additional manuallgsia is neces-
sary to understand what actual errors students making.

6. PERSPECTIVE

Fine-grained analysis of student edits has givetietigiled insight
into student performance both with DrRacket andum course
overall. The data obtained from our rubric ideesferrors that
students find challenging at different points ie tourse; refining
this with manual inspection of the edit files susfgeconcrete
tasks (such as working with nested data structuheg)pose hur-
dles for students. This information is much hatddadentify from

looking at the results of homeworks and exams, esititese
represent a final—rather than ongoing—snapshatuafent work.

Effectively, this paper proposes assessing IDE eudicular
changes not just ostudent achievemerfe.g, course or assign-
ment grades) but to also include assessment basedar effec-
tiveness While our work measures error effectiveness gisiu-
dent actions (edits), we grade the errors, notsthdents. This
has several advantages. Interpreting the sucdems action re-
quires a benchmark against which to measure itetWheasuring
an edit, the benchmark of “made progress” is ledgestive and

easier to recognize than, say, benchmarking stubehaviors
against models of behaviors of domain experts.

Our approach does require additional data analgsidentify the
conceptual problems underlying the edit messagéompeance.
Additional studies are required to determine whpcbblems are
best solved by changes to the IDE or curriculurspeetively.

Although our work studies edits to Racket/Schenograms, our
rubric is not language-specific. Our read-undedstmrmulate
model of processing errors is general, as areategories of edits
that appear in the rubric. We have not checkeegt-Hodder relia-
bility of the rubric against edits in other langeagbut we hypo-
thesize that the rubric could apply more broadly.

7. COMPARISON TO RELATED WORK

Due to space constraints, we omit citations toreffto improve
error feedback that lack user-oriented evaluatieerly work on
the pedagogy of programming sought to classifyetiners novice
programmers make when using assembly [1] or P§4hIMore

recent work along the same lines studies BlueJJ2R,Java [11],
Eiffel [19], and Helium [8]. Others have studiedvites’ behavior
during debugging sessions [18]. These observatisnalies de-
pend on ad hoc methodologies which impair theiraépcibility

and makes drawing general conclusions difficultr @ark differs
in not studying the students' mistakes broadly qudlitatively;

rather, we constructed a quantitative evaluatiothefinfluence of
error messages on students' behavior which (we)haifleinvite

reproduction.

There are still relatively few efforts to evaludte learning im-
pact of pedagogic IDEs [21]. Gross and Powers sureeent
efforts [6], including, notably, those on Lego Mstdrms [4], and
on Jeliot 2000 [16], though neither works foundtatistically
significant improvement. Jadud [13] found a wealatienship
between the errors students' received and theil iourse grade.
These studies suffer from having too many confougdactors
underneath their dependent variable (the coursgegjaln con-
trast, we attempted to tease out the effect of enessages alone.

Other groups have proposed subjective rubricsudysstudents'
development process [14], or to evaluate studesutstess during
individual programming sessions [3, 15]. Coull het added
explanatory notes to the error messages of thelatdrdava com-
piler based on their observations. These notes raggerimental
subjects significantly more likely to complete sessfully short
exercises.

Researchers have interviewed students about tbe messages
in each of Alice [17] and BlueJ [7]; the difficulyf interpreting

the error messages fared amongst the studentgryroomplaints
[23]. One evaluation of BlueJ asked students whethey found

the messages useful [25]. Most did, but it is uaclhat this

means since the evaluation did not gather any cmatipa data
against which to calibrate the students’ remarks.

Nienaltowski et al. [20] compared the impact of iagdong-form
explanation to an error message, and of addingghlight on
three different error messages, in a short webebagperiment.
They found that the former has no impact, whilelgter impairs
performance slightly. Unfortunately, the experinemtesign has
many threats to validity, some of which the papgmawledged.

8. ACKNOWLEDGMENTS

Fatih Koksal generously provided his software. Rgaudle Baker,
Nate Krach, and Janice Gobert offered extensivécadwn social
science methodology. We thank the students whacpated in
our study and Glynis Hamel for enabling it. Tamaanzner
discussed study design and provided useful refeseridatthias
Felleisen offered valuable discussion and commentsin early
draft. This work is partially supported by the Utional
Science Foundation and Google.

9. REFERENCES
[1] Chabert, J.M. and Higginbotham, T.F. An Invgation of
Novice Programmer Errors in IBM 370 (OS) Assembant

guage. InProceedings of the ACM Southeast Regional Confe-

rence pages 319-323. 1976.

[2] Cohen, J. A coefficient of agreement for nonhis@ales Edu-
cational and Psychological Measureme?®(1):37—-46, 1960.

[3] Coull, N.J.SNOOPIE: Development Of A Learning Support
Tool For Novice Programmers Within A Conceptual e
work PhD Thesis, School of Computer Science, Universit
Of St. Andrews, 2008.

[4] Fagin, B.S. and Merkle, L. Quantitative anaysf the effects
of robots on introductory Computer Science educatiour-
nal on Educational Resources in Computif@):1-18, 2002.

[5] Findler, R.B., Clements, J., Flanagan, C.,tFMdt, Krishna-
murthi, S., Steckler, P., and Felleisen, M. DrSchefpro-
gramming environment for Schendaurnal of Functional
Programming 12(02):159-182, 2002.

[6] Gross, P. and Powers, K. Evaluating assessnoémisvice
programming environments. Proceedings of the Interna-
tional Workshop on Computing Education Reseapetyes
99-110. 2005.

[7] Hagan, D. and Markham, S. Teaching Java wighBlueJ
environment. IrProceedings of Australasian Society for
Computers in Learning in Tertiary Education Confese
2000.

[8] Hage, J. and Keeken, P.V. Mining Helium progsanith
Neon.Technical Report, Department of Information and
Computing Sciences, Utrecht Universi2p07.

[9] Holt, R.C., Wortman, D.B., Barnard, D.T., andr@y, J.R.
SP/k: a system for teaching computer programn@ugnmu-
nications of the ACM20(5):301-309, 1977.

[10] Hristova, M., Misra, A., Rutter, M., and MerguR. Identify-
ing and correcting Java programming errors foioidictory

computer science students.Rmoceedings of the Symposium
on Computer Science Educatigrages 153—-156. 2003.

[11] Jackson, J., Cobb, M., and Carver, C. |[demyTop Java
Errors for Novice Programmers. Rroceedings of the Fron-
tiers in Education Conferencpages T4C—24. 2005.

[12] Jadud, M.C. A First Look at Novice CompilatiBehaviour
Using BlueJComputer Science Educatiatb(1):25-40,
2005.

[13] Jadud, M.C. Methods and tools for exploringice compi-
lation behaviour. IProceedings of the International Work-
shop on Computing Education Researgages 73-84. 2006.

[14] Koksal, M.F., Baar, R.E., and Uskiidarli, S. Screen-Replay:
A Session Recording and Analysis Tool for DrScheffre-
ceedings of the Scheme and Functional Programmiok\W
shop, Technical Report, California Polytechnic 8tahniver-
sity, CPSLO-CSC-09-03103-110, 2009.

[15] Lane, H.C. and VanLehn, K. Intention-basedrsxp An
approach to measuring success at solving the catiggos
problem. InProceedings of the Symposium on Computer
Science Educatigrpages 373-377. 2005.

[16] Levy, R.B., Ben-Ari, M., and Uronen, P.A. Teliot 2000
program animation syster@omputers & Educatigrd0(1):1-
15, 2003.

[17] Moskal, B., Lurie, D., and Cooper, S. Evaluagtthe effec-
tiveness of a new instructional approachPinceedings of
the Symposium on Computer Science Educapages 75-79.
2004.

[18] Murphy, L., Lewandowski, G., McCauley, R., Sim B.,
Thomas, L., and Zander, C. Debugging: the goodb#uk
and the quirky — a qualitative analysis of novictgategies.
In Proceedings of the Symposium on Computer Science Ed
cation, pages 163-167. 2008.

[19] Ng Cheong Vee, M., Mannock, K., and MeyerHsapirical
study of novice errors and error paths in obje@+ded pro-
gramming. InProceedings of the Conference of the Higher
Education Academy, Subject Centre for Informatind a
Computer Sciencepages 54-58. 2006.

[20] Nienaltowski, M., Pedroni, M., and Meyer, Bo@piler Er-
ror Messages: What Can Help NovicesPinceedings of the
Technical Symposium on Computer Science Educatamges
168-172. 2008.

[21] Pears, A., Seidman, S., Malmi, L., Mannila, Adams, E.,
Bennedsen, J., Devlin, M., and Paterson, J. A susfétera-
ture on the teaching of introductory programmiAg@M
SIGCSE Bulletin39(4):204-223, 2007.

[22] Ragonis, N. and Ben-Ari, M. On understanding statics
and dynamics of object-oriented progra®d€M SIGCSE
Bulletin, 37(1):226-230, 2005.

[23] Rey, J.SFrom Alice To BlueJ: A Transition To Javdas-
ter's thesis, School of Computing, Robert Gordoivehsity,
2009.

[24] Spohrer, J.C. and Soloway, E. Novice mistakes:the folk
wisdoms correct€ommunications of the AGN9(7)1986.

[25] Van Haaster, K. and Hagan, D. Teaching andriag with
BlueJ: an Evaluation of a Pedagogical Téssues in Inform-
ing Science and Information Technolp@y55-470, 2004.

