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ABSTRACT  
Good error messages are critical for novice programmers.  Re-
cognizing this, the DrRacket programming environment provides 
a series of pedagogically-inspired language subsets with error 
messages customized to each subset.  We apply human-factors 
research methods to explore the effectiveness of these messages. 
Unlike existing work in this area, we study messages at a fine-
grained level by analyzing the edits students make in response to 
various classes of errors.  We present a rubric (which is not lan-
guage specific) to evaluate student responses, apply it to a course-
worth of student lab work, and describe what we have learned 
about using the rubric effectively.  We also discuss some concrete 
observations on the effectiveness of these messages. 

Categories and Subject Descriptors   K.3.2 [Computer and Edu-
cation]: Computer and Information Science Education—Computer science 
education; H.5.2 [User Interfaces]: Evaluation/Methodology 

General Terms   Experimentation, Human Factors 

Keywords   Error messages, Novice programmers, User-studies 

1. INTRODUCTION 
In a compiler or programming environment, error messages are 
one of the most important points of contact between the system 
and the programmer. This is all the more critical in tools for no-
vice programmers, who lack the experience to decipher compli-
cated or poorly-constructed feedback. Thus, many research efforts 
have sought to make professional compilers more suitable for 
teaching by rewriting their error messages [10] or supplementing 
them with hints and explanations [3].  Such efforts complement 
more general research on improving error messages by means 
such as error recovery during parsing. 

DrRacket1 [5] goes farther.  It defines several sublanguages 
around what students have learned at different stages [9].  Each 
sublanguage provides only (versions of) those constructs that 

make sense at that point, and similarly customizes error messages. 
The levels and messages have evolved over a decade of observa-
tion in lab, class, and office settings. 

Despite this care, we still see novices struggle to work effectively 
with the messages.  To understand why, we logged students’ edits 
in response to errors over an entire college-level introductory 
course and coded whether the edits reflected understanding of the 
error message.  Our work is novel in using fine-grained data about 
edits to assess the effectiveness of individual classes of error mes-
sages.  Our coding rubric for assessing the performance of error 
messages through edits is a key contribution of this work.   Our 
observations about how to use the coding results to reflect on our 
course is another.  Finally, we also present some concrete obser-
vations on how students respond to these messages. 

2. RESPONSES TO ERROR MESSAGES 
We begin by showing a few examples of student responses to 
error messages during Lab #1. When Lab #1 begins, most stu-
dents have not had any contact with programming beyond four 
hours of course lectures given in the days before and two short 
homeworks due the day before and evening after the lab. 

Figure 1 (a) shows one function (excerpted from a larger pro-
gram) submitted for execution 40 minutes after the start of the lab. 
The student is defining a function label, with one argument 
name. Most likely the student is missing a closing parenthesis 
after name, and another one after "conservative". The nesting 
suggests that the student is struggling to remember how to com-
bine two Boolean tests into one using the or operator. DrRacket 
provides a textual message (lower pane) and highlights (pink in 
upper pane) a code fragment that triggered the error.  

Figure 1 (b) shows the student’s next edit. The student inserted 
name as an argument to the function call to string=?. An ambi-
guity in the error message might have prompted this mistake: the 
word “function” in the fragment “for the function's second argu-
ment” can refer to either the function being defined (label) or 
the function being called (string=?). DrRacket means the for-
mer, but the student seems to have inferred the latter (perhaps 
influenced by the highlighting). Our dataset illustrates several 
situations in which the association of the highlight to the error text 
is underspecified. 

As another example, Figure 2 shows a sequence of programs that 
each triggered the same error message. The topmost program was 
submitted first; what follows are the student’s first four attempts 
to correct the problem. The student never identifies the actual 
problem, which is a missing open parenthesis before the cond.  
The entire sequence lasts 10 minutes, until the end of the lab ses-
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sion. A few weeks later, when the student participated in 
view, he mentioned how frustrating the experience had been.

Even with our years of experience teaching with 
state of the programs we collected was often surprising, if not 
humbling.  Students manage to create quite mangled functions, 
which the error messages must attempt to help them sort out.

3. METHODOLOGY 
In the spring of 2010, we ran a study in WPI’s introductory pr
gramming course.  We configured DrRacket to save a copy of 
each program each student tried to run, as well as the error me
sage received (if any) plus any keystrokes that th
in response to the error message, up to their next attempt at ru
ning the program. We collected data during the course’s normal 
lab sessions, which ran for 50 minutes per week for six weeks 
(undergrad courses at WPI are 28 hour-long lectu
weeks, so the data cover the entire course).  During labs, students 
worked on exercises covering recent lecture material. 

Of the 140 students in the course, 64 agreed to participate in this 
data collection and 53 actually submitted data.  
participants for demographics such as intended majors, but more 
than a third of the overall course population listed majors other 
than computer science.  Student participation dropped to 24 st
dents by the final week as a result of students changing lab seats 
and not reinitializing the software at their new stations; no st
dents withdrew from the study.   

4. THE DESIGN OF A CODING RUBRIC
There are many ways one might study the effectiveness of error 
messages.  A common approach in the literature (as reviewed in 
Section 7) is to change the messages or their presentation and 
compare the impact on student grades at the end of the course.  
We are interested in a more fine-grained analysis that determines 
which error messages are effective and in what ways.  The

(a) 

(b) 

Figure 1. (a) A student's program and its error message,
(b) The student's response to the error message

the student participated in an inter-
how frustrating the experience had been. 

Even with our years of experience teaching with DrRacket, the 
state of the programs we collected was often surprising, if not 

Students manage to create quite mangled functions, 
attempt to help them sort out. 

WPI’s introductory pro-
to save a copy of 

student tried to run, as well as the error mes-
sage received (if any) plus any keystrokes that the student pressed 
in response to the error message, up to their next attempt at run-
ning the program. We collected data during the course’s normal 

per week for six weeks 
lectures over seven 

weeks, so the data cover the entire course).  During labs, students 
lecture material.   

Of the 140 students in the course, 64 agreed to participate in this 
data collection and 53 actually submitted data.  We did not ask 

for demographics such as intended majors, but more 
than a third of the overall course population listed majors other 

Student participation dropped to 24 stu-
changing lab seats 

and not reinitializing the software at their new stations; no stu-

THE DESIGN OF A CODING RUBRIC  
There are many ways one might study the effectiveness of error 
messages.  A common approach in the literature (as reviewed in 

or their presentation and 
compare the impact on student grades at the end of the course.  

grained analysis that determines 
which error messages are effective and in what ways.  There is no 

single metric for “effectiveness” of an error message
metrics include whether students demonstrate 
ing with messages or whether the messages help novice pr
grammers emulate experts.  We have chosen a narrower metric: 
does the student make a reasonable edit, as
rienced instructor, in response to the error message?

To gain confidence that our metric and its application to our 
were valid, we developed a formal rubric 
subjected it to a test of inter-coder reliability
is the standard term for one who applies a rubric to data)
coder reliability tests whether a rubric can be applied objectively
multiple coders independently apply it
sistency, then revise the rubric until sufficient consistency is 
achieved.  After describing how our rubric evolved
the standard measurement of inter-coder reliability

Our rubric attempts to distinguish way
succeed or fail.  Our design starts from a conceptual model of how 
error messages intend to help students: 
fective, it is because a student reads it, 
ing, and can then use the information to formulate a useful course 
of action. This is a three step sequence:

Read ���� Understand ����

Students can get stuck at any of these steps.  
tion is whether students get stuck earlier in the sequence with 
particular kinds of errors.  To explore this
rubric that identifies how far a student 
sequence when responding to a given error message.
suggest a rubric with at least four categories: 
failure-on-understand, failure-on-formulate, and fixed
Our initial attempts to distinguish failure
understand were not successful (in that we could n
ter-coder reliability).  Our recordings of student editing sessions 
lack attention-based data (such as eye
where a student looked or reacted when an error occurred
data might have helped distinguish between read
failures.  We concluded that a more realistic rubric would 

                                                                
1 This paper uses “coder” exclusively as a social

particular, “coder” never refers to programmers.

 

 
error message,  

(b) The student's response to the error message 

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
   cond [(and (string=? check-for-match stringOne))]
        [(and (string=? check-for-match stringTwo))])

 define: ex pected only one expression for the function body, b ut 
found at least one extra part   
 
(define (string-one-of? check-for-match stringOne stringTwo stringThree)
   cond [(string=? check-for-match stringOne)]
        [(and (string=? check-for-match stringTwo)
        [(and (string=? check-for-match stringThree))])
 
(define (string-one-of? check-for-match stringOne stringTwo stringThree)
   cond [and ((string=? check-for-match stringOne))]
        [(and (string=? check-for-match stringTwo))]
        [(and (string=? check-for-match stringThree))])
 
(define (string-one-of? check-for-match stringOne stringTwo stringThree)
   cond [(string=? check-for-match stringOne)]
        [(string=? check-for-match stringTwo)]
        [(string=? check-for-match stringThree)])
 
(define (string-one-of? check-for-match stringOne stringTwo stringThree)
   cond [(string=? check-for-match)] 
        [(string=? check-for-match stringTwo)]
        [(string=? check-for-match stringThree)])
 

Figure 2. A sequence of responses to an error 
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demonstrate learning after work-
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and its application to our data 
rubric for assessing edits and 

coder reliability [2] (where “coder” 
is the standard term for one who applies a rubric to data).1   Inter-
coder reliability tests whether a rubric can be applied objectively: 

it to data, measure their con-
e the rubric until sufficient consistency is 

how our rubric evolved, we present 
coder reliability that we used. 

Our rubric attempts to distinguish ways in which error messages 
succeed or fail.  Our design starts from a conceptual model of how 
error messages intend to help students: if an error message is ef-

it, can understand its mean-
ation to formulate a useful course 

: 

���� Formulate 

Students can get stuck at any of these steps.  One interesting ques-
tion is whether students get stuck earlier in the sequence with 

explore this, we would ideally like a 
rubric that identifies how far a student successfully went in the 
sequence when responding to a given error message.  This would 
suggest a rubric with at least four categories: failure-on-read, 

formulate, and fixed-the-error. 
Our initial attempts to distinguish failure-on-read from failure-on-

(in that we could not achieve in-
.  Our recordings of student editing sessions 

eye-tracking) that indicate 
where a student looked or reacted when an error occurred; such 
data might have helped distinguish between read- and understand-

We concluded that a more realistic rubric would com-

                         

This paper uses “coder” exclusively as a social-science term; in 
particular, “coder” never refers to programmers. 

match stringOne stringTwo stringThree) 
match stringOne))] 
match stringTwo))]) 

pected only one expression for the function body, b ut 

match stringOne stringTwo stringThree) 
match stringOne)] 

match stringTwo))] 
match stringThree))]) 

match stringOne stringTwo stringThree) 
match stringOne))] 
match stringTwo))] 
match stringThree))]) 

match stringOne stringTwo stringThree) 
match stringOne)] 
match stringTwo)] 
match stringThree)]) 

match stringOne stringTwo stringThree) 

match stringTwo)] 
match stringThree)]) 

. A sequence of responses to an error message 



bine failure-on-read and failure-on-understand into a single cate-
gory separate from failure-on-formulate. 

Figure 3 presents our final rubric for assessing students’ edits.  
The [UNR] and [PART] codes capture failure-on-read/understand 
and failure-on-formulate, respectively.  All the responses in the 
sequence shown in Figure 2 were coded [UNR], for example, 
since none of the edits tried to change the number of parts in the 
function body position of the define, and nothing else suggested 
that the student had read or understood the message.  

Earlier versions of our rubric attempted to discern two nuances of 
failure-on-understand: failure to understand the text as separate 
from failure to understand what the message really means in 
terms of the code.  An error message can use simple words and 
simple grammar but still be hard to understand because the under-
lying problem is difficult or because the message inadequately 
describes the problem.  Responding to these error messages re-
quires students to read beyond the words and understand that 
“when DrRacket says X, it really means Y”.  Figure 4 shows an 
example.  On its face, the message contradicts the text of the 
code: there definitely is a parenthesis before the and. To under-
stand the message, one has to realize that the parenthesis before 
the and has been attributed to the cond; in the parser’s view, the 
and stands on its own without a parenthesis. Predictably, the stu-
dent failed to formulate a useful response to that message (they 
deleted the parenthesis before the and). Early versions of the ru-
bric tried to capture how often students failed to formulate a re-
sponse according to the deep meaning of the message (what an 
expert would understand from the message) because they were 
being misled by its literal meaning. However, coders were not 
sufficiently reliable when making these distinctions, and so the 
final rubric has only one code corresponding to a failure to formu-
late, namely [PART]. 

For the remaining codes in Figure 3, [DEL] captures cases when 
students simply deleted error-inducing code rather than attempting 
to fix it, [DIFF] captures edits that were useful but unrelated to the 
reported error (such as fixing a different error or adding more 
code or test cases), and [FIX] captures successful completion of 
the read/understand/formulate sequence.  These codes and their 
precise wordings reflect several design decisions that arose while 
developing the rubric: 

The rubric should assess the performance of the error mes-
sages, not the students.  Consider a situation in which a student’s 
edit corrects a problem that had nothing to do with the original 
error message.  While this is a positive outcome, it does not ad-
dress our primary concern of how effective error messages are at 
guiding students through the read/understand/formulate sequence.  
Similarly, students may experience difficulties with problem solv-
ing or program design that should not be attributed to shortcom-
ings of the error messages.   To keep our coding focused on the 
error messages, we include the [DIFF] code for reasonable edits 
unrelated to the proximate error.  Unreasonable edits unrelated to 
the proximate error are coded [UNR].  Our first rubric design had 
unified [DIFF] and [UNR]; we split them after considering when 
the error message could be held accountable.  Sometimes, stu-
dents simply avoid the proximate error by deleting their code (for 
example, deleting a test case that yields an error).  To avoid judg-
ing the error message (as [UNR] might), we introduced the sepa-
rate [DEL] code for such cases.  When deletion is the appropriate 
action (e.g., when removing an extra function argument) and it is 
performed on a reasonable code fragment, we code it as [PART] 
or [FIX] as appropriate.  Together, [DIFF] and [DEL] characterize 
situations in which the student’s action provides no information 
about the quality of the error message. 

Coding decisions have to be made narrowly, strictly in relation 
to the proximate error described in the message. DrRacket reports 
only one error at a time.  Fixing the problem mentioned in the 
message sometimes makes the overall code worse (for example, a 
student might delete an extra expression rather than add an opera-
tor to combine it with the rest of the code).  Frequently, an edit 
fixes the error mentioned but leaves other glaring errors in sur-
rounding code untouched. We nevertheless code such edits as 
[FIX]. [FIX] implies neither mastery on the part of the student nor 
oracular accuracy on the part of the message. It simply means that 
the student formulated a reasonable response to the problem men-
tioned in the message. The text “though other cringing errors 
might remain” reminds coders to take this narrow interpretation. 
In practice, our coders needed the explicit reminder to be self-
consistent in applying [FIX]. 

Coding needs a holistic view of multi-faceted error messages.  
DrRacket’s error messages have two components: text and a high-
light.  In assessing whether a student had “read” or “understood” 
an error message, we had to decide whether editing within the 
highlighted expression sufficed (even if the edit showed no evi-
dence of understanding the text).  Some students glance first at the 
highlight for a quick overview of the error; this should be a credit 
to the error message, even though we have a bias towards the text 
when assessing “understanding”.  At the same time, students often 
made random edits in the highlighted code that were arguably 
unrelated to the proximate error.  We ultimately decided that loca-
tion was not sufficient justification for ascribing [PART] or [FIX]. 

We accepted liberally any evidence that the student read and un-
derstood something from the message.  In some cases, making 
this determination required human judgment or teaching expe-
rience, as was the case with the “expect a name” example in Fig-
ure 1. Because we decided that the student probably got the idea 
of inserting “name” from having read the words “expected a 
name” in the message, we coded that response [PART] rather than 
[UNR].  We found such subjective decisions surprisingly consis-
tent across the coders. 

 [DEL] Deletes the problematic code wholesale. 

 [UNR] Unrelated to the error message, and does not help. 

 [DIFF] Unrelated to the error message, but it correctly ad-
dresses a different error or makes progress in some 
other way. 

 [PART] Evidence that the student has understood the error 
message (though perhaps not wholly) and is trying 
to take an appropriate action (though perhaps not 
well).  

 [FIX]  Fixes the proximate error (though other cringing 
errors might remain). 

Figure 3. Rubric for responses to error messages 



During the design process, we also ruled out ideas that failed to 
survive inter-coder reliability tests or our own evaluation: 

• Distinguishing [FIX] codes based on elapsed time: we 
considered factoring in students’ response time by having 
separate codes for “fixed with hesitation” and “fixed with-
out hesitation” (we have timestamp data on all edits, and 
can replay editing sessions at their original pace).  In 
theory, errors to which students respond more slowly 
might be harder for students to process.  We ultimately 
ruled this out for two main reasons. First, response time 
could be affected by corrupting interferences (such as a 
student taking a bathroom break or differences in working 
styles across students).  Second, we lacked a good metric 
for the expected difficulty of each error message; without 
that, we would not be able to identify messages that were 
performing worse than expected. 

• Considering whether the edit yielded a new error message 
as a criterion for [FIX]: this is a corollary to our observa-
tion about coding narrowly.  In practice, we found cases in 
which the student really did fix the error, but had code of 
such a form that the same error applied after the edit.  We 
chose to ignore this criterion in final coding. 

The rubric as shown in Figure 3 meets standards of inter-coder 
reliability on the data from Lab #1.  We used the standard metric 
of inter-coder reliability [2], κ, which is defined as  

κ � Agreement 
 Expected Agreement
1 
 Expected Agreement  

κ compares the agreement of the human coders to the agreement 
that would be expected by chance according to the marginal prob-
abilities. Because of this, it is a more demanding metric than the 
simple proportions of the number of times the coders agreed. Val-
ues of κ usually lie within 1.0 (meaning perfect agreement) and 
0.0 (meaning agreement exactly as good as would be expected by 
chance), but values of κ can be negative if the human coders per-
form worse than chance. We executed this test of inter-coder re-
liability on each version of the rubric. The final version of the 
rubric (the one shown in Figure 3) was the first version which met 
the κ > 0.8 standard, with κ = 0.84 on 18 different responses. 

5. APPLYING THE RUBRIC 
Our rubric is designed to identify error messages that students 
respond to poorly. Given that multiple error messages can reflect 
the same underlying problem, we group messages into nine the-
matically-related categories, such as “parenthesis matching”, 
“syntax of define”, and “runtime type”.  For each lab, we sampled 

15 edits per category (a sufficient size for statistical validity) and 
coded each against the rubric in Figure 3. We used Köksal, et al.’s 
edit-replay software [14] to replay programs during coding.   

Table 1 shows the results of coding for the 9 most common error 
categories (the categories not shown occurred very rarely.)  The 
top row shows the number of errors an average student received 
during each lab (#

El). The sub-table for each lab shows the percen-
tage of the error messages presented during that lab that were of 
the given category (��,�% ); the percentage of error messages in the 
category that were badly responded to according to our coding 
( ��,�% ); and an estimate of the number of errors in that category 
that each student responded to poorly during the lab. This estimate 
is the product of the preceding three values: 

��,�# �  ��# · ��,�
% · ��,�

%  

When computing each variable for the table, we average across 
students to avoid due influence by the few students who compile 
much more frequently than the average. For instance, we compute 

��,�%  by first taking the ratio of �UNR�  �PART� against the de-
nominator �UNR�  �PART�  �FIX� per individual student. Spe-
cifically, for student s, lab, l, and category c, we compute: 

�% &,�,� � '�UNR�   �PART�(/'�UNR�  �PART�  �FIX�( 

Then we take the unweighted average across the n students who 
are represented in the selected samples: 

�% �,� � *+ �% &,�,�, n-  

The bar to the right of #bad in each cell indicates the relative 
magnitude of #bad values within that lab.  The ten lab/error-class 
combinations with the highest number of poor responses appear in 
boxes.  The sum of the #bad estimates within each lab (under the 
table) indicates the total estimated number of errors that a student 
would make in that lab.  By this measure, we expect a student to 
respond poorly to 3.16 errors in Lab #1 and 5.51 errors in Lab #2.  
While these may seem small out of context, 5.51 errors in 50 mi-
nutes translates to a poorly-handled error message every 10 mi-
nutes.  Worse, this is an average, so the frequency is much higher 
for some students. 

In interpreting the data, we are interested in the cells with boxes 
(suggesting the highest likelihood of recurrence in a general popu-
lation) and the cells with the highest %bad values (suggesting 
errors which were highly problematic for perhaps a small number 
of students).   

We are particularly interested in interventions that might help 
students at the very beginning of the course (when students form 
their first impressions of programming and may elect to drop the 
course).  Within Lab #1, syntax errors (including “paren match-
ing”) dominate the problematic cases.   Based on other data (from 
interviews with students and a vocabulary quiz), we have good 
reason to suspect problems with the highlights and the vocabu-
lary.  Due to space constraints, we defer discussion of these find-
ings to follow-up papers that report on interventions.  

Lab #2 contains four of the ten boxes; students struggled most 
with the messages in this lab.  This might be expected, as students 
confront many new syntactic constructs and concepts in the pre-
ceding week.   However, the boxes occur in somewhat surprising 

(define (label-near? name bias word1 word2 word3)  

  (cond 

    (and (cond [(string=? name word1) "Name Located"] 

               [(string=? bias word1) "Bias Located"]) 

         (cond [(string=? name word2) "Name Located"] 

               [(string=? bias word2) "Bias Located"]) 

  "Mark") 

)) 

 

 and: found a use of `and' that does not follow an 

open parenthesis 

Figure 4. A counterfactual error message 

 



categories (e.g., argument count and unbound identifier); manual 
inspection of the data for those cells might point to the problems. 

Most of the boxes occur in the first three weeks.  This would be 
consistent with students improving at error handling.  However, 
curricular aspects of the labs also affect error patterns across cells.  
For example, the “arg(ument) count” errors in Lab #5 trace to 
mistakes students made while defining n-ary tree data.  Construct-
ing n-ary trees requires nesting lists inside of structures; students 
often close expressions for multiple branches incorrectly while 
nesting calls to the constructors.  Understanding the context in 
which a class of errors becomes problematic is critical to design-
ing good interventions based on this data. 

It is tempting to interpret these graphs as indicating students' 
conceptual difficulties in the course. This interpretation is 
invalid because the error message that a student sees is often not a 
direct indicator of the underlying error. For instance, Lab #6 had 
numerous “unbound-id” errors, but a careful manual analysis 
revealed that many of them were from students improperly using 
structures (e.g., using field reference operators incorrectly in vari-
ous ways), not merely being bad typists. To further confound 
matters, the precise error that is shown is a function of parsing 
strategies, because many invalid expressions can be flagged in 
multiple ways.  Therefore, an additional manual analysis is neces-
sary to understand what actual errors students were making. 

6. PERSPECTIVE 
Fine-grained analysis of student edits has given us detailed insight 
into student performance both with DrRacket and in our course 
overall.  The data obtained from our rubric identifies errors that 
students find challenging at different points in the course; refining 
this with manual inspection of the edit files suggests concrete 
tasks (such as working with nested data structures) that pose hur-
dles for students. This information is much harder to identify from 
looking at the results of homeworks and exams, since these 
represent a final—rather than ongoing—snapshot of student work.   

Effectively, this paper proposes assessing IDE and curricular 
changes not just on student achievement (e.g, course or assign-
ment grades) but to also include assessment based on error effec-
tiveness.  While our work measures error effectiveness using stu-
dent actions (edits), we grade the errors, not the students.  This 
has several advantages.  Interpreting the success of an action re-
quires a benchmark against which to measure it.  When measuring 
an edit, the benchmark of “made progress” is less subjective and 

easier to recognize than, say, benchmarking student behaviors 
against models of behaviors of domain experts.   

Our approach does require additional data analysis to identify the 
conceptual problems underlying the edit message performance.  
Additional studies are required to determine which problems are 
best solved by changes to the IDE or curriculum, respectively. 

Although our work studies edits to Racket/Scheme programs, our 
rubric is not language-specific.  Our read-understand-formulate 
model of processing errors is general, as are the categories of edits 
that appear in the rubric.  We have not checked inter-coder relia-
bility of the rubric against edits in other languages, but we hypo-
thesize that the rubric could apply more broadly. 

7. COMPARISON TO RELATED WORK 
Due to space constraints, we omit citations to efforts to improve 
error feedback that lack user-oriented evaluation. Early work on 
the pedagogy of programming sought to classify the errors novice 
programmers make when using assembly [1] or Pascal [24]. More 
recent work along the same lines studies BlueJ [12, 22], Java [11], 
Eiffel [19], and Helium [8]. Others have studied novices’ behavior 
during debugging sessions [18]. These observational studies de-
pend on ad hoc methodologies which impair their reproducibility 
and makes drawing general conclusions difficult. Our work differs 
in not studying the students' mistakes broadly and qualitatively; 
rather, we constructed a quantitative evaluation of the influence of 
error messages on students' behavior which (we hope) will invite 
reproduction.  

There are still relatively few efforts to evaluate the learning im-
pact of pedagogic IDEs [21]. Gross and Powers survey recent 
efforts [6], including, notably, those on Lego Mindstorms [4], and 
on Jeliot 2000 [16], though neither works found a statistically 
significant improvement. Jadud [13] found a weak relationship 
between the errors students' received and their final course grade. 
These studies suffer from having too many confounding factors 
underneath their dependent variable (the course grades). In con-
trast, we attempted to tease out the effect of error messages alone. 

Other groups have proposed subjective rubrics to study students' 
development process [14], or to evaluate students’ success during 
individual programming sessions [3, 15]. Coull further added 
explanatory notes to the error messages of the standard Java com-
piler based on their observations. These notes made experimental 
subjects significantly more likely to complete successfully short 
exercises.   

  

Table 1. Coding results. 

Lab number #1 #2 #3 #4 #5 #6
#  o f erro rs a student
received during this lab
(on average)

8.5 16.3 14.4 9.0 9.8 9.8

% error % bad # bad % error % bad # bad % error % bad # bad % error % bad # bad % error % bad # bad % error % bad # bad

a rg. count 5% 48% 0.22 17% 27% 0.74 14% 17% 0.33 13% 20% 0.24 35% 21% 0.74 12% 31% 0.36

parens matching 28% 24% 0.58 12% 14% 0.27 17% 0% 0.00 14% 0% 0.00 13% 0% 0.00 10% 15% 0.15

runtime cond 3% 0% 0.00 3% 100% 0.49 4% 20% 0.12 6% 72% 0.40 8% 78% 0.62 1% 100% 0.06

runtime type 2% 100% 0.15 8% 73% 0.91 16% 40% 0.93 8% 22% 0.17 6% 44% 0.26 3% 38% 0.13

s yntax cond 14% 51% 0.59 4% 50% 0.31 6% 26% 0.24 10% 28% 0.25 9% 20% 0.17 11% 11% 0.12

s yntax define 16% 50% 0.68 14% 50% 1.14 6% 15% 0.14 7% 24% 0.14 2% 17% 0.03 3% 38% 0.10

s yntax func. ca l l 14% 64% 0.74 14% 17% 0.37 12% 14% 0.26 23% 27% 0.55 4% 29% 0.12 13% 38% 0.48

s yntax s truct 0% 0% 0.00 8% 32% 0.43 5% 92% 0.73 0% 0% 0.00 1% 0% 0.00 0% 0% 0.00

unbound id. 16% 16% 0.21 13% 40% 0.85 16% 14% 0.32 16% 0% 0.00 20% 7% 0.14 34% 13% 0.44

Total: 3.16 5.51 3.07 1.75 2.07 1.84



Researchers have interviewed students about the error messages 
in each of Alice [17] and BlueJ [7]; the difficulty of interpreting 
the error messages fared amongst the students' primary complaints 
[23]. One evaluation of BlueJ asked students whether they found 
the messages useful [25]. Most did, but it is unclear what this 
means since the evaluation did not gather any comparative data 
against which to calibrate the students’ remarks.  

Nienaltowski et al. [20] compared the impact of adding long-form 
explanation to an error message, and of adding a highlight on 
three different error messages, in a short web-based experiment. 
They found that the former has no impact, while the later impairs 
performance slightly. Unfortunately, the experiment’s design has 
many threats to validity, some of which the paper acknowledged. 
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