
Measuring the Effectiveness of Error Messages
Designed for Novice Programmers

Guillaume Marceau
WPI

100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

gmarceau@wpi.edu

Kathi Fisler
WPI

100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University
115 Waterman St

Providence, RI, USA
+1 (401) 863-7600

sk@cs.brown.edu

ABSTRACT
Good error messages are critical for novice programmers. Re-
cognizing this, the DrRacket programming environment provides
a series of pedagogically-inspired language subsets with error
messages customized to each subset. We apply human-factors
research methods to explore the effectiveness of these messages.
Unlike existing work in this area, we study messages at a fine-
grained level by analyzing the edits students make in response to
various classes of errors. We present a rubric (which is not lan-
guage specific) to evaluate student responses, apply it to a course-
worth of student lab work, and describe what we have learned
about using the rubric effectively. We also discuss some concrete
observations on the effectiveness of these messages.

Categories and Subject Descriptors K.3.2 [Computer and Edu-
cation]: Computer and Information Science Education—Computer science
education; H.5.2 [User Interfaces]: Evaluation/Methodology

General Terms Experimentation, Human Factors

Keywords Error messages, Novice programmers, User-studies

1. INTRODUCTION
In a compiler or programming environment, error messages are
one of the most important points of contact between the system
and the programmer. This is all the more critical in tools for no-
vice programmers, who lack the experience to decipher compli-
cated or poorly-constructed feedback. Thus, many research efforts
have sought to make professional compilers more suitable for
teaching by rewriting their error messages [10] or supplementing
them with hints and explanations [3]. Such efforts complement
more general research on improving error messages by means
such as error recovery during parsing.

DrRacket1 [5] goes farther. It defines several sublanguages
around what students have learned at different stages [9]. Each
sublanguage provides only (versions of) those constructs that

make sense at that point, and similarly customizes error messages.
The levels and messages have evolved over a decade of observa-
tion in lab, class, and office settings.

Despite this care, we still see novices struggle to work effectively
with the messages. To understand why, we logged students’ edits
in response to errors over an entire college-level introductory
course and coded whether the edits reflected understanding of the
error message. Our work is novel in using fine-grained data about
edits to assess the effectiveness of individual classes of error mes-
sages. Our coding rubric for assessing the performance of error
messages through edits is a key contribution of this work. Our
observations about how to use the coding results to reflect on our
course is another. Finally, we also present some concrete obser-
vations on how students respond to these messages.

2. RESPONSES TO ERROR MESSAGES
We begin by showing a few examples of student responses to
error messages during Lab #1. When Lab #1 begins, most stu-
dents have not had any contact with programming beyond four
hours of course lectures given in the days before and two short
homeworks due the day before and evening after the lab.

Figure 1 (a) shows one function (excerpted from a larger pro-
gram) submitted for execution 40 minutes after the start of the lab.
The student is defining a function label, with one argument
name. Most likely the student is missing a closing parenthesis
after name, and another one after "conservative". The nesting
suggests that the student is struggling to remember how to com-
bine two Boolean tests into one using the or operator. DrRacket
provides a textual message (lower pane) and highlights (pink in
upper pane) a code fragment that triggered the error.

Figure 1 (b) shows the student’s next edit. The student inserted
name as an argument to the function call to string=?. An ambi-
guity in the error message might have prompted this mistake: the
word “function” in the fragment “for the function's second argu-
ment” can refer to either the function being defined (label) or
the function being called (string=?). DrRacket means the for-
mer, but the student seems to have inferred the latter (perhaps
influenced by the highlighting). Our dataset illustrates several
situations in which the association of the highlight to the error text
is underspecified.

As another example, Figure 2 shows a sequence of programs that
each triggered the same error message. The topmost program was
submitted first; what follows are the student’s first four attempts
to correct the problem. The student never identifies the actual
problem, which is a missing open parenthesis before the cond.
The entire sequence lasts 10 minutes, until the end of the lab ses-

1 Formerly known as DrScheme. www.drracket.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03...$10.00.

sion. A few weeks later, when the student participated in
view, he mentioned how frustrating the experience had been.

Even with our years of experience teaching with
state of the programs we collected was often surprising, if not
humbling. Students manage to create quite mangled functions,
which the error messages must attempt to help them sort out.

3. METHODOLOGY
In the spring of 2010, we ran a study in WPI’s introductory pr
gramming course. We configured DrRacket to save a copy of
each program each student tried to run, as well as the error me
sage received (if any) plus any keystrokes that th
in response to the error message, up to their next attempt at ru
ning the program. We collected data during the course’s normal
lab sessions, which ran for 50 minutes per week for six weeks
(undergrad courses at WPI are 28 hour-long lectu
weeks, so the data cover the entire course). During labs, students
worked on exercises covering recent lecture material.

Of the 140 students in the course, 64 agreed to participate in this
data collection and 53 actually submitted data.
participants for demographics such as intended majors, but more
than a third of the overall course population listed majors other
than computer science. Student participation dropped to 24 st
dents by the final week as a result of students changing lab seats
and not reinitializing the software at their new stations; no st
dents withdrew from the study.

4. THE DESIGN OF A CODING RUBRIC
There are many ways one might study the effectiveness of error
messages. A common approach in the literature (as reviewed in
Section 7) is to change the messages or their presentation and
compare the impact on student grades at the end of the course.
We are interested in a more fine-grained analysis that determines
which error messages are effective and in what ways. The

(a)

(b)

Figure 1. (a) A student's program and its error message,
(b) The student's response to the error message

the student participated in an inter-
how frustrating the experience had been.

Even with our years of experience teaching with DrRacket, the
state of the programs we collected was often surprising, if not

Students manage to create quite mangled functions,
attempt to help them sort out.

WPI’s introductory pro-
to save a copy of

student tried to run, as well as the error mes-
sage received (if any) plus any keystrokes that the student pressed
in response to the error message, up to their next attempt at run-
ning the program. We collected data during the course’s normal

per week for six weeks
lectures over seven

weeks, so the data cover the entire course). During labs, students
lecture material.

Of the 140 students in the course, 64 agreed to participate in this
data collection and 53 actually submitted data. We did not ask

for demographics such as intended majors, but more
than a third of the overall course population listed majors other

Student participation dropped to 24 stu-
changing lab seats

and not reinitializing the software at their new stations; no stu-

THE DESIGN OF A CODING RUBRIC
There are many ways one might study the effectiveness of error
messages. A common approach in the literature (as reviewed in

or their presentation and
compare the impact on student grades at the end of the course.

grained analysis that determines
which error messages are effective and in what ways. There is no

single metric for “effectiveness” of an error message
metrics include whether students demonstrate
ing with messages or whether the messages help novice pr
grammers emulate experts. We have chosen a narrower metric:
does the student make a reasonable edit, as
rienced instructor, in response to the error message?

To gain confidence that our metric and its application to our
were valid, we developed a formal rubric
subjected it to a test of inter-coder reliability
is the standard term for one who applies a rubric to data)
coder reliability tests whether a rubric can be applied objectively
multiple coders independently apply it
sistency, then revise the rubric until sufficient consistency is
achieved. After describing how our rubric evolved
the standard measurement of inter-coder reliability

Our rubric attempts to distinguish way
succeed or fail. Our design starts from a conceptual model of how
error messages intend to help students:
fective, it is because a student reads it,
ing, and can then use the information to formulate a useful course
of action. This is a three step sequence:

Read ���� Understand ����

Students can get stuck at any of these steps.
tion is whether students get stuck earlier in the sequence with
particular kinds of errors. To explore this
rubric that identifies how far a student
sequence when responding to a given error message.
suggest a rubric with at least four categories:
failure-on-understand, failure-on-formulate, and fixed
Our initial attempts to distinguish failure
understand were not successful (in that we could n
ter-coder reliability). Our recordings of student editing sessions
lack attention-based data (such as eye
where a student looked or reacted when an error occurred
data might have helped distinguish between read
failures. We concluded that a more realistic rubric would

1 This paper uses “coder” exclusively as a social

particular, “coder” never refers to programmers.

error message,

(b) The student's response to the error message

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
 cond [(and (string=? check-for-match stringOne))]
 [(and (string=? check-for-match stringTwo))])

 define: ex pected only one expression for the function body, b ut
found at least one extra part

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
 cond [(string=? check-for-match stringOne)]
 [(and (string=? check-for-match stringTwo)
 [(and (string=? check-for-match stringThree))])

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
 cond [and ((string=? check-for-match stringOne))]
 [(and (string=? check-for-match stringTwo))]
 [(and (string=? check-for-match stringThree))])

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
 cond [(string=? check-for-match stringOne)]
 [(string=? check-for-match stringTwo)]
 [(string=? check-for-match stringThree)])

(define (string-one-of? check-for-match stringOne stringTwo stringThree)
 cond [(string=? check-for-match)]
 [(string=? check-for-match stringTwo)]
 [(string=? check-for-match stringThree)])

Figure 2. A sequence of responses to an error

of an error message. Possible
demonstrate learning after work-

whether the messages help novice pro-
We have chosen a narrower metric:

does the student make a reasonable edit, as judged by an expe-
error message?

and its application to our data
rubric for assessing edits and

coder reliability [2] (where “coder”
is the standard term for one who applies a rubric to data).1 Inter-
coder reliability tests whether a rubric can be applied objectively:

it to data, measure their con-
e the rubric until sufficient consistency is

how our rubric evolved, we present
coder reliability that we used.

Our rubric attempts to distinguish ways in which error messages
succeed or fail. Our design starts from a conceptual model of how
error messages intend to help students: if an error message is ef-

it, can understand its mean-
ation to formulate a useful course

:

���� Formulate

Students can get stuck at any of these steps. One interesting ques-
tion is whether students get stuck earlier in the sequence with

explore this, we would ideally like a
rubric that identifies how far a student successfully went in the
sequence when responding to a given error message. This would
suggest a rubric with at least four categories: failure-on-read,

formulate, and fixed-the-error.
Our initial attempts to distinguish failure-on-read from failure-on-

(in that we could not achieve in-
. Our recordings of student editing sessions

eye-tracking) that indicate
where a student looked or reacted when an error occurred; such
data might have helped distinguish between read- and understand-

We concluded that a more realistic rubric would com-

This paper uses “coder” exclusively as a social-science term; in
particular, “coder” never refers to programmers.

match stringOne stringTwo stringThree)
match stringOne))]
match stringTwo))])

pected only one expression for the function body, b ut

match stringOne stringTwo stringThree)
match stringOne)]

match stringTwo))]
match stringThree))])

match stringOne stringTwo stringThree)
match stringOne))]
match stringTwo))]
match stringThree))])

match stringOne stringTwo stringThree)
match stringOne)]
match stringTwo)]
match stringThree)])

match stringOne stringTwo stringThree)

match stringTwo)]
match stringThree)])

. A sequence of responses to an error message

bine failure-on-read and failure-on-understand into a single cate-
gory separate from failure-on-formulate.

Figure 3 presents our final rubric for assessing students’ edits.
The [UNR] and [PART] codes capture failure-on-read/understand
and failure-on-formulate, respectively. All the responses in the
sequence shown in Figure 2 were coded [UNR], for example,
since none of the edits tried to change the number of parts in the
function body position of the define, and nothing else suggested
that the student had read or understood the message.

Earlier versions of our rubric attempted to discern two nuances of
failure-on-understand: failure to understand the text as separate
from failure to understand what the message really means in
terms of the code. An error message can use simple words and
simple grammar but still be hard to understand because the under-
lying problem is difficult or because the message inadequately
describes the problem. Responding to these error messages re-
quires students to read beyond the words and understand that
“when DrRacket says X, it really means Y”. Figure 4 shows an
example. On its face, the message contradicts the text of the
code: there definitely is a parenthesis before the and. To under-
stand the message, one has to realize that the parenthesis before
the and has been attributed to the cond; in the parser’s view, the
and stands on its own without a parenthesis. Predictably, the stu-
dent failed to formulate a useful response to that message (they
deleted the parenthesis before the and). Early versions of the ru-
bric tried to capture how often students failed to formulate a re-
sponse according to the deep meaning of the message (what an
expert would understand from the message) because they were
being misled by its literal meaning. However, coders were not
sufficiently reliable when making these distinctions, and so the
final rubric has only one code corresponding to a failure to formu-
late, namely [PART].

For the remaining codes in Figure 3, [DEL] captures cases when
students simply deleted error-inducing code rather than attempting
to fix it, [DIFF] captures edits that were useful but unrelated to the
reported error (such as fixing a different error or adding more
code or test cases), and [FIX] captures successful completion of
the read/understand/formulate sequence. These codes and their
precise wordings reflect several design decisions that arose while
developing the rubric:

The rubric should assess the performance of the error mes-
sages, not the students. Consider a situation in which a student’s
edit corrects a problem that had nothing to do with the original
error message. While this is a positive outcome, it does not ad-
dress our primary concern of how effective error messages are at
guiding students through the read/understand/formulate sequence.
Similarly, students may experience difficulties with problem solv-
ing or program design that should not be attributed to shortcom-
ings of the error messages. To keep our coding focused on the
error messages, we include the [DIFF] code for reasonable edits
unrelated to the proximate error. Unreasonable edits unrelated to
the proximate error are coded [UNR]. Our first rubric design had
unified [DIFF] and [UNR]; we split them after considering when
the error message could be held accountable. Sometimes, stu-
dents simply avoid the proximate error by deleting their code (for
example, deleting a test case that yields an error). To avoid judg-
ing the error message (as [UNR] might), we introduced the sepa-
rate [DEL] code for such cases. When deletion is the appropriate
action (e.g., when removing an extra function argument) and it is
performed on a reasonable code fragment, we code it as [PART]
or [FIX] as appropriate. Together, [DIFF] and [DEL] characterize
situations in which the student’s action provides no information
about the quality of the error message.

Coding decisions have to be made narrowly, strictly in relation
to the proximate error described in the message. DrRacket reports
only one error at a time. Fixing the problem mentioned in the
message sometimes makes the overall code worse (for example, a
student might delete an extra expression rather than add an opera-
tor to combine it with the rest of the code). Frequently, an edit
fixes the error mentioned but leaves other glaring errors in sur-
rounding code untouched. We nevertheless code such edits as
[FIX]. [FIX] implies neither mastery on the part of the student nor
oracular accuracy on the part of the message. It simply means that
the student formulated a reasonable response to the problem men-
tioned in the message. The text “though other cringing errors
might remain” reminds coders to take this narrow interpretation.
In practice, our coders needed the explicit reminder to be self-
consistent in applying [FIX].

Coding needs a holistic view of multi-faceted error messages.
DrRacket’s error messages have two components: text and a high-
light. In assessing whether a student had “read” or “understood”
an error message, we had to decide whether editing within the
highlighted expression sufficed (even if the edit showed no evi-
dence of understanding the text). Some students glance first at the
highlight for a quick overview of the error; this should be a credit
to the error message, even though we have a bias towards the text
when assessing “understanding”. At the same time, students often
made random edits in the highlighted code that were arguably
unrelated to the proximate error. We ultimately decided that loca-
tion was not sufficient justification for ascribing [PART] or [FIX].

We accepted liberally any evidence that the student read and un-
derstood something from the message. In some cases, making
this determination required human judgment or teaching expe-
rience, as was the case with the “expect a name” example in Fig-
ure 1. Because we decided that the student probably got the idea
of inserting “name” from having read the words “expected a
name” in the message, we coded that response [PART] rather than
[UNR]. We found such subjective decisions surprisingly consis-
tent across the coders.

 [DEL] Deletes the problematic code wholesale.

 [UNR] Unrelated to the error message, and does not help.

 [DIFF] Unrelated to the error message, but it correctly ad-
dresses a different error or makes progress in some
other way.

 [PART] Evidence that the student has understood the error
message (though perhaps not wholly) and is trying
to take an appropriate action (though perhaps not
well).

 [FIX] Fixes the proximate error (though other cringing
errors might remain).

Figure 3. Rubric for responses to error messages

During the design process, we also ruled out ideas that failed to
survive inter-coder reliability tests or our own evaluation:

• Distinguishing [FIX] codes based on elapsed time: we
considered factoring in students’ response time by having
separate codes for “fixed with hesitation” and “fixed with-
out hesitation” (we have timestamp data on all edits, and
can replay editing sessions at their original pace). In
theory, errors to which students respond more slowly
might be harder for students to process. We ultimately
ruled this out for two main reasons. First, response time
could be affected by corrupting interferences (such as a
student taking a bathroom break or differences in working
styles across students). Second, we lacked a good metric
for the expected difficulty of each error message; without
that, we would not be able to identify messages that were
performing worse than expected.

• Considering whether the edit yielded a new error message
as a criterion for [FIX]: this is a corollary to our observa-
tion about coding narrowly. In practice, we found cases in
which the student really did fix the error, but had code of
such a form that the same error applied after the edit. We
chose to ignore this criterion in final coding.

The rubric as shown in Figure 3 meets standards of inter-coder
reliability on the data from Lab #1. We used the standard metric
of inter-coder reliability [2], κ, which is defined as

κ � Agreement
 Expected Agreement
1
 Expected Agreement

κ compares the agreement of the human coders to the agreement
that would be expected by chance according to the marginal prob-
abilities. Because of this, it is a more demanding metric than the
simple proportions of the number of times the coders agreed. Val-
ues of κ usually lie within 1.0 (meaning perfect agreement) and
0.0 (meaning agreement exactly as good as would be expected by
chance), but values of κ can be negative if the human coders per-
form worse than chance. We executed this test of inter-coder re-
liability on each version of the rubric. The final version of the
rubric (the one shown in Figure 3) was the first version which met
the κ > 0.8 standard, with κ = 0.84 on 18 different responses.

5. APPLYING THE RUBRIC
Our rubric is designed to identify error messages that students
respond to poorly. Given that multiple error messages can reflect
the same underlying problem, we group messages into nine the-
matically-related categories, such as “parenthesis matching”,
“syntax of define”, and “runtime type”. For each lab, we sampled

15 edits per category (a sufficient size for statistical validity) and
coded each against the rubric in Figure 3. We used Köksal, et al.’s
edit-replay software [14] to replay programs during coding.

Table 1 shows the results of coding for the 9 most common error
categories (the categories not shown occurred very rarely.) The
top row shows the number of errors an average student received
during each lab (#

El). The sub-table for each lab shows the percen-
tage of the error messages presented during that lab that were of
the given category (��,�%); the percentage of error messages in the
category that were badly responded to according to our coding
(��,�%); and an estimate of the number of errors in that category
that each student responded to poorly during the lab. This estimate
is the product of the preceding three values:

��,�# � ��# · ��,�
% · ��,�

%

When computing each variable for the table, we average across
students to avoid due influence by the few students who compile
much more frequently than the average. For instance, we compute

��,�% by first taking the ratio of �UNR� �PART� against the de-
nominator �UNR� �PART� �FIX� per individual student. Spe-
cifically, for student s, lab, l, and category c, we compute:

�% &,�,� � '�UNR� �PART�(/'�UNR� �PART� �FIX�(

Then we take the unweighted average across the n students who
are represented in the selected samples:

�% �,� � *+ �% &,�,�, n-

The bar to the right of #bad in each cell indicates the relative
magnitude of #bad values within that lab. The ten lab/error-class
combinations with the highest number of poor responses appear in
boxes. The sum of the #bad estimates within each lab (under the
table) indicates the total estimated number of errors that a student
would make in that lab. By this measure, we expect a student to
respond poorly to 3.16 errors in Lab #1 and 5.51 errors in Lab #2.
While these may seem small out of context, 5.51 errors in 50 mi-
nutes translates to a poorly-handled error message every 10 mi-
nutes. Worse, this is an average, so the frequency is much higher
for some students.

In interpreting the data, we are interested in the cells with boxes
(suggesting the highest likelihood of recurrence in a general popu-
lation) and the cells with the highest %bad values (suggesting
errors which were highly problematic for perhaps a small number
of students).

We are particularly interested in interventions that might help
students at the very beginning of the course (when students form
their first impressions of programming and may elect to drop the
course). Within Lab #1, syntax errors (including “paren match-
ing”) dominate the problematic cases. Based on other data (from
interviews with students and a vocabulary quiz), we have good
reason to suspect problems with the highlights and the vocabu-
lary. Due to space constraints, we defer discussion of these find-
ings to follow-up papers that report on interventions.

Lab #2 contains four of the ten boxes; students struggled most
with the messages in this lab. This might be expected, as students
confront many new syntactic constructs and concepts in the pre-
ceding week. However, the boxes occur in somewhat surprising

(define (label-near? name bias word1 word2 word3)

 (cond

 (and (cond [(string=? name word1) "Name Located"]

 [(string=? bias word1) "Bias Located"])

 (cond [(string=? name word2) "Name Located"]

 [(string=? bias word2) "Bias Located"])

 "Mark")

))

 and: found a use of `and' that does not follow an

open parenthesis

Figure 4. A counterfactual error message

categories (e.g., argument count and unbound identifier); manual
inspection of the data for those cells might point to the problems.

Most of the boxes occur in the first three weeks. This would be
consistent with students improving at error handling. However,
curricular aspects of the labs also affect error patterns across cells.
For example, the “arg(ument) count” errors in Lab #5 trace to
mistakes students made while defining n-ary tree data. Construct-
ing n-ary trees requires nesting lists inside of structures; students
often close expressions for multiple branches incorrectly while
nesting calls to the constructors. Understanding the context in
which a class of errors becomes problematic is critical to design-
ing good interventions based on this data.

It is tempting to interpret these graphs as indicating students'
conceptual difficulties in the course. This interpretation is
invalid because the error message that a student sees is often not a
direct indicator of the underlying error. For instance, Lab #6 had
numerous “unbound-id” errors, but a careful manual analysis
revealed that many of them were from students improperly using
structures (e.g., using field reference operators incorrectly in vari-
ous ways), not merely being bad typists. To further confound
matters, the precise error that is shown is a function of parsing
strategies, because many invalid expressions can be flagged in
multiple ways. Therefore, an additional manual analysis is neces-
sary to understand what actual errors students were making.

6. PERSPECTIVE
Fine-grained analysis of student edits has given us detailed insight
into student performance both with DrRacket and in our course
overall. The data obtained from our rubric identifies errors that
students find challenging at different points in the course; refining
this with manual inspection of the edit files suggests concrete
tasks (such as working with nested data structures) that pose hur-
dles for students. This information is much harder to identify from
looking at the results of homeworks and exams, since these
represent a final—rather than ongoing—snapshot of student work.

Effectively, this paper proposes assessing IDE and curricular
changes not just on student achievement (e.g, course or assign-
ment grades) but to also include assessment based on error effec-
tiveness. While our work measures error effectiveness using stu-
dent actions (edits), we grade the errors, not the students. This
has several advantages. Interpreting the success of an action re-
quires a benchmark against which to measure it. When measuring
an edit, the benchmark of “made progress” is less subjective and

easier to recognize than, say, benchmarking student behaviors
against models of behaviors of domain experts.

Our approach does require additional data analysis to identify the
conceptual problems underlying the edit message performance.
Additional studies are required to determine which problems are
best solved by changes to the IDE or curriculum, respectively.

Although our work studies edits to Racket/Scheme programs, our
rubric is not language-specific. Our read-understand-formulate
model of processing errors is general, as are the categories of edits
that appear in the rubric. We have not checked inter-coder relia-
bility of the rubric against edits in other languages, but we hypo-
thesize that the rubric could apply more broadly.

7. COMPARISON TO RELATED WORK
Due to space constraints, we omit citations to efforts to improve
error feedback that lack user-oriented evaluation. Early work on
the pedagogy of programming sought to classify the errors novice
programmers make when using assembly [1] or Pascal [24]. More
recent work along the same lines studies BlueJ [12, 22], Java [11],
Eiffel [19], and Helium [8]. Others have studied novices’ behavior
during debugging sessions [18]. These observational studies de-
pend on ad hoc methodologies which impair their reproducibility
and makes drawing general conclusions difficult. Our work differs
in not studying the students' mistakes broadly and qualitatively;
rather, we constructed a quantitative evaluation of the influence of
error messages on students' behavior which (we hope) will invite
reproduction.

There are still relatively few efforts to evaluate the learning im-
pact of pedagogic IDEs [21]. Gross and Powers survey recent
efforts [6], including, notably, those on Lego Mindstorms [4], and
on Jeliot 2000 [16], though neither works found a statistically
significant improvement. Jadud [13] found a weak relationship
between the errors students' received and their final course grade.
These studies suffer from having too many confounding factors
underneath their dependent variable (the course grades). In con-
trast, we attempted to tease out the effect of error messages alone.

Other groups have proposed subjective rubrics to study students'
development process [14], or to evaluate students’ success during
individual programming sessions [3, 15]. Coull further added
explanatory notes to the error messages of the standard Java com-
piler based on their observations. These notes made experimental
subjects significantly more likely to complete successfully short
exercises.

Table 1. Coding results.

Lab number #1 #2 #3 #4 #5 #6
o f erro rs a student
received during this lab
(on average)

8.5 16.3 14.4 9.0 9.8 9.8

% error % bad # bad % error % bad # bad % error % bad # bad % error % bad # bad % error % bad # bad % error % bad # bad

a rg. count 5% 48% 0.22 17% 27% 0.74 14% 17% 0.33 13% 20% 0.24 35% 21% 0.74 12% 31% 0.36

parens matching 28% 24% 0.58 12% 14% 0.27 17% 0% 0.00 14% 0% 0.00 13% 0% 0.00 10% 15% 0.15

runtime cond 3% 0% 0.00 3% 100% 0.49 4% 20% 0.12 6% 72% 0.40 8% 78% 0.62 1% 100% 0.06

runtime type 2% 100% 0.15 8% 73% 0.91 16% 40% 0.93 8% 22% 0.17 6% 44% 0.26 3% 38% 0.13

s yntax cond 14% 51% 0.59 4% 50% 0.31 6% 26% 0.24 10% 28% 0.25 9% 20% 0.17 11% 11% 0.12

s yntax define 16% 50% 0.68 14% 50% 1.14 6% 15% 0.14 7% 24% 0.14 2% 17% 0.03 3% 38% 0.10

s yntax func. ca l l 14% 64% 0.74 14% 17% 0.37 12% 14% 0.26 23% 27% 0.55 4% 29% 0.12 13% 38% 0.48

s yntax s truct 0% 0% 0.00 8% 32% 0.43 5% 92% 0.73 0% 0% 0.00 1% 0% 0.00 0% 0% 0.00

unbound id. 16% 16% 0.21 13% 40% 0.85 16% 14% 0.32 16% 0% 0.00 20% 7% 0.14 34% 13% 0.44

Total: 3.16 5.51 3.07 1.75 2.07 1.84

Researchers have interviewed students about the error messages
in each of Alice [17] and BlueJ [7]; the difficulty of interpreting
the error messages fared amongst the students' primary complaints
[23]. One evaluation of BlueJ asked students whether they found
the messages useful [25]. Most did, but it is unclear what this
means since the evaluation did not gather any comparative data
against which to calibrate the students’ remarks.

Nienaltowski et al. [20] compared the impact of adding long-form
explanation to an error message, and of adding a highlight on
three different error messages, in a short web-based experiment.
They found that the former has no impact, while the later impairs
performance slightly. Unfortunately, the experiment’s design has
many threats to validity, some of which the paper acknowledged.

8. ACKNOWLEDGMENTS
Fatih Köksal generously provided his software. Ryan S. de Baker,
Nate Krach, and Janice Gobert offered extensive advice on social
science methodology. We thank the students who participated in
our study and Glynis Hamel for enabling it. Tamara Munzner
discussed study design and provided useful references. Matthias
Felleisen offered valuable discussion and comments on an early
draft. This work is partially supported by the US National
Science Foundation and Google.

9. REFERENCES
[1] Chabert, J.M. and Higginbotham, T.F. An Investigation of

Novice Programmer Errors in IBM 370 (OS) Assembly Lan-
guage. In Proceedings of the ACM Southeast Regional Confe-
rence, pages 319-323. 1976.

[2] Cohen, J. A coefficient of agreement for nominal scales. Edu-
cational and Psychological Measurement, 20(1):37–46, 1960.

[3] Coull, N.J. SNOOPIE: Development Of A Learning Support
Tool For Novice Programmers Within A Conceptual Frame-
work. PhD Thesis, School of Computer Science, University
Of St. Andrews, 2008.

[4] Fagin, B.S. and Merkle, L. Quantitative analysis of the effects
of robots on introductory Computer Science education. Jour-
nal on Educational Resources in Computing, 2(4):1-18, 2002.

[5] Findler, R.B., Clements, J., Flanagan, C., Flatt, M., Krishna-
murthi, S., Steckler, P., and Felleisen, M. DrScheme: A pro-
gramming environment for Scheme. Journal of Functional
Programming, 12(02):159–182, 2002.

[6] Gross, P. and Powers, K. Evaluating assessments of novice
programming environments. In Proceedings of the Interna-
tional Workshop on Computing Education Research, pages
99-110. 2005.

[7] Hagan, D. and Markham, S. Teaching Java with the BlueJ
environment. In Proceedings of Australasian Society for
Computers in Learning in Tertiary Education Conference.
2000.

[8] Hage, J. and Keeken, P.V. Mining Helium programs with
Neon. Technical Report, Department of Information and
Computing Sciences, Utrecht University, 2007.

[9] Holt, R.C., Wortman, D.B., Barnard, D.T., and Cordy, J.R.
SP/k: a system for teaching computer programming. Commu-
nications of the ACM, 20(5):301–309, 1977.

[10] Hristova, M., Misra, A., Rutter, M., and Mercuri, R. Identify-
ing and correcting Java programming errors for introductory

computer science students. In Proceedings of the Symposium
on Computer Science Education, pages 153–156. 2003.

[11] Jackson, J., Cobb, M., and Carver, C. Identifying Top Java
Errors for Novice Programmers. In Proceedings of the Fron-
tiers in Education Conference, pages T4C–24. 2005.

[12] Jadud, M.C. A First Look at Novice Compilation Behaviour
Using BlueJ. Computer Science Education, 15(1):25–40,
2005.

[13] Jadud, M.C. Methods and tools for exploring novice compi-
lation behaviour. In Proceedings of the International Work-
shop on Computing Education Research, pages 73–84. 2006.

[14] Köksal, M.F., Başar, R.E., and Üsküdarlı, S. Screen-Replay:
A Session Recording and Analysis Tool for DrScheme. Pro-
ceedings of the Scheme and Functional Programming Work-
shop, Technical Report, California Polytechnic State Univer-
sity, CPSLO-CSC-09-03, :103-110, 2009.

[15] Lane, H.C. and VanLehn, K. Intention-based scoring: An
approach to measuring success at solving the composition
problem. In Proceedings of the Symposium on Computer
Science Education, pages 373-377. 2005.

[16] Levy, R.B., Ben-Ari, M., and Uronen, P.A. The Jeliot 2000
program animation system. Computers & Education, 40(1):1-
15, 2003.

[17] Moskal, B., Lurie, D., and Cooper, S. Evaluating the effec-
tiveness of a new instructional approach. In Proceedings of
the Symposium on Computer Science Education, pages 75-79.
2004.

[18] Murphy, L., Lewandowski, G., McCauley, R., Simon, B.,
Thomas, L., and Zander, C. Debugging: the good, the bad,
and the quirky — a qualitative analysis of novices' strategies.
In Proceedings of the Symposium on Computer Science Edu-
cation, pages 163-167. 2008.

[19] Ng Cheong Vee, M., Mannock, K., and Meyer, B. Empirical
study of novice errors and error paths in object-oriented pro-
gramming. In Proceedings of the Conference of the Higher
Education Academy, Subject Centre for Information and
Computer Sciences, pages 54-58. 2006.

[20] Nienaltowski, M., Pedroni, M., and Meyer, B. Compiler Er-
ror Messages: What Can Help Novices? In Proceedings of the
Technical Symposium on Computer Science Education, pages
168-172. 2008.

[21] Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,
Bennedsen, J., Devlin, M., and Paterson, J. A survey of litera-
ture on the teaching of introductory programming. ACM
SIGCSE Bulletin, 39(4):204-223, 2007.

[22] Ragonis, N. and Ben-Ari, M. On understanding the statics
and dynamics of object-oriented programs. ACM SIGCSE
Bulletin, 37(1):226-230, 2005.

[23] Rey, J.S. From Alice To BlueJ: A Transition To Java. Mas-
ter's thesis, School of Computing, Robert Gordon University,
2009.

[24] Spohrer, J.C. and Soloway, E. Novice mistakes: are the folk
wisdoms correct? Communications of the ACM, 29(7)1986.

[25] Van Haaster, K. and Hagan, D. Teaching and Learning with
BlueJ: an Evaluation of a Pedagogical Tool. Issues in Inform-
ing Science and Information Technology, 1:455-470, 2004.

