
EÆient Inferene of Stati Types for JavaByteode?Etienne M. Gagnon, Laurie J. Hendren and Guillaume MareauSable Researh Group, Shool of Computer SieneMGill University, Montreal, Canada[gagnon,hendren,gmareau℄�sable.mgill.aAbstrat. In this paper, we present an eÆient and pratial algorithmfor inferring stati types for loal variables in a 3-address, stakless, rep-resentation of Java byteode.By deoupling the type inferene problem from the low level byteoderepresentation, and abstrating it into a onstraint system, we show thatthere exists veri�able byteode that annot be statially typed. Further,we show that, without transforming the program, the stati typing prob-lem is NP-hard. In order to get a pratial approah we have developedan algorithm that works eÆiently for the usual ases and then applieseÆient program transformations to simplify the hard ases.We have implemented this algorithm in the Soot framework. Our ex-perimental results show that all of the 17,000 methods used in our testswere suessfully typed, 99.8% of those required only the �rst stage, 0.2%required the seond stage, and no methods required the third stage.1 IntrodutionJava byteode is rapidly beoming an important intermediate representation.This is predominately beause Java byteode interpreters and JIT-ompilers arebeoming more ommon, and suh interpreters = ompilers are now a standardpart of popular web browsers. Thus, Java byteode (heneforth referred to assimply byteode) has beome a target representation for a wide variety of om-pilers, inluding ompilers for Ada [23℄, ML [14℄, Sheme [5℄, and Ei�el [20℄.Byteode has many interesting properties, inluding some guarantees aboutveri�able byteode that ensure that veri�ed byteode programs are well-behaved.For example, veri�able byteode guarantees that eah method invoation has theorret number and type of arguments on the Java expression stak. Veri�ationis done partly statially via a ow analysis of the byteode, and partly via heksthat are exeuted at runtime. As part of the stati veri�ation, a ow analysisis used to estimate the type of eah loal variable and eah loation on theexpression stak, for eah program point. However, as we will show in setion 3this is not the same typing problem as the one addressed in this paper.Although byteode has many good features, it is not an ideal representationfor program analysis = optimization or program understanding. For analysis =? This work has been supported in part by FCAR and NSERC.



optimization, the expression stak ompliates both the analyses and subsequenttransformations. In addition, the stak-based representation does not map nielyto real register-based arhitetures. For these sorts of optimizing ompiler appli-ations a more traditional three-address ode is preferable, and is used in manyoptimizing Java ompilers. For program understanding, the byteode is too low-level, and one would like to present a higher-level view to the programmer. Oneexample of a high-level representation is deompiling byteode bak to Java.Note that to be generally useful suh deompilers should work for any veri�ablebyteode, not just byteode produed by Java ompilers.1When byteode is translated to a three-address representation or high-levelrepresentation it is important that all variables should be given a stati typethat is orret for all uses of that variable. For a deompiler, eah variable needsto have a delared type that is type orret for all uses of that variable. Forthree-address representations, the type of a variable an be used to improveanalysis and optimization. We have found having types for loal variables to beindispensable in our ompiler, and one example use, improving the quality ofthe all graph, is presented in setion 7.2.In this paper, we address the problem of inferring a stati type for eah vari-able in a three-address representation of byteode alled Jimple[26, 25℄. Jimple ispart of the Soot ompiler framework that is used for both ompiler optimizationsand deompilation. It is a fairly standard representation, so our results shouldapply to other similar representations.In order to give a feel for the problem, onsider the simple example in Figure1. Figure 1(a) gives an untyped method in a Jimple-like intermediate represen-tation. Note that there is some type information whih omes diretly from thebyteode. For example, the signature of method f is spei�ed in the byteode, sowe know a �xed type for the return value, and we know some type informationfrom new instrutions. However, loal variables, suh as a, b,  and s do nothave an expliit type in the byteode. We an determine orret types for thesevariables by olleting type onstraints. Figure 1(b) shows the lass hierarhy,and �gure 1() shows the onstraints imposed by eah statement. We formulatethe typing problem as a graph problem. Figure 1(d) shows a graph that repre-sents both the lass hierarhy and the type onstraints on the variables. Typesin the hierarhy are shown as double irles whih we all hard nodes, while typevariables are shown as single irles whih we all soft nodes. A solution to thetyping problem is found by oalesing nodes together. If nodes an be oalesedso that eah oalesed node ontains exatly one hard node, then we have founda solution to the typing problem. Figure 1(e) shows one possible oalesing ofthe graph, and this orresponds to the typed method in Figure 1(e). Note thatthere may be more than one orret solution. For this example another orretsolution would be to assign a, b and  the type Objet. In general, we prefer1 Also note that by ombining a ompiler that translates from a high-level language Xto byteode with a deompiler from byteode to Java, one has a tool for translatingfrom X to Java.



a typing that gives more spei� types sine this will help more in subsequentanalyses.publi java.lang.String f(){ <unknown> a;<unknown> b;<unknown> ;<unknown> s;s1:  = new C();s2: b = new B();if ( ... )s3: a = ;elses4: a = b;s5: s = a.toString();s6: return(s);}
lass A extends Objet{ ... }lass B extends A{ publi String toString() ...;...}lass C extends A{ publi String toString() ...;...}(a) untyped method (b) lass hierarhys1: T () Cs2: T (b) Bs3: T (a) T ()s4: T (a) T (b)s5: Objet T (a)T (s) Strings6: String  T (s)
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publi java.lang.String f(){ A a;B b;C ;java.lang.String s;s1:  = new C();s2: b = new B();if ( ... )s3: a = ;elses4: a = b;s5: s = a.toString();s6: return(s);}(e) solution (f) typed methodFig. 1. Simple example of stati typingThe type inferene problem would seem easy at �rst glane, and for oursimple example it would be quite easy to dedue types during the byteodeto Jimple translation. However, there are three points that make the generaltyping problem diÆult: (1) the program point spei� nature of the byteodeveri�ation, (2) multiple inheritane due to interfaes, and (3) the orret typing



of arrays. In fat, we will show that the type inferene problem is NP-hard.However, we propose an eÆient, polynomial time, multi-stage algorithm thatbypasses this omplexity by performing program transformations that simplifythe type inferene problem, without a�eting program semantis, when a diÆultase is enountered. Our algorithm performs two kinds of transformations: (1)variable splitting at objet reation sites, and (2) insertion of type asts thatare guaranteed to sueed at run-time. Our experimental results show that all ofthe 16,492 methods extrated from 2,787 JDK 1.1 and SPEC jvm98 lasses weretyped by our algorithm, without inserting any type asts. Variable splitting wasonly applied in 29 methods.It is important to ontrast this work, where we �nd a stati type onsistentwith all uses of a variable, with other type inferene analyses where the mainfous is to statially infer the set of dynami (or onrete) types that a variableould hold, at a partiular program point at run-time [17, 18, 1, 2℄. We will allsuh algorithms run-time type analysis to distinguish them from our stati-typeanalysis. For our example program in Figure 1(a), run-time type analysis wouldinfer that the variable a at program point s1 ould have type B, whereas atprogram point s5 a ould have types fB, Cg. In our typing problem we need to�nd one stati type that is onsistent with all uses of a. As we show in setion7.2, our stati type is atually a reasonably good starting point for other analyses,inluding a run-time type analysis we have built on top of typed Jimple.Our paper is strutured as follows. In setion 2 we present our three-addressrepresentation. In setion 3 we show some examples to demonstrate why thistyping problem is diÆult. In setion 4, we de�ne the general stati type infereneproblem, and give the main algorithm for programs without arrays. In setion 5we present extensions to our algorithm to handle arrays. In setion 6 we showhow to infer integer types. Setion 7 ontains our experimental results. Finally,we review related work in setion 8 and present our onlusions in setion 9.2 A 3-Address Representation: JimpleWe assume that the reader is already familiar with Java byteode. A ompletedesription of the lass �le format an be found in [13℄. Furthermore, we assumethat all analyzed byteode would be suessfully veri�ed by the Java byteodeveri�er[13℄. It is important to remember that the veri�ability of the ode impliesthat it is well behaved, but it does not imply that it is well typed.While the byteode format seems of great interest for implementing an inter-preter, it is not well suited for reasoning about byteode, sine many operandsare on the stak and thus do not have expliit names. In order to alleviate thisdiÆulty, many Java optimizing ompilers onvert byteode to a more traditional3-address-ode, where all stak-based operations are transformed into loal vari-able based operations. This is made possible by the onditions met by veri�edbyteode, most notably: the onstant stak depth at eah program point, andthe expliit maximum depth of stak and number of loal variables used in thebody of a method.



The byteode to 3-address-ode transformation is done by omputing thestak depth at eah program point, introduing a new loal variable for eahstak depth, and then rewriting the instrution using the new loal variables2.For example:iload_1 (stak depth before 0 after 1)iload_2 (stak depth before 1 after 2)iadd (stak depth before 2 after 1)istore_1 (stak depth before 1 after 0)is transformed into:stak_1 = loal_1stak_2 = loal_2stak_1 = stak_1 iadd stak_2loal_1 = stak_1In produing the 3-address-ode it is simple to retain all type informationontained in byteode instrutions. So, for instane, every virtual method on-tains the omplete signature of the alled method, as well as the name of thelass delaring the method. However, as there are no expliit types for loals orstak loations, it is more diÆult to �nd types for these variables. In our om-piler we produe a 3-address representation alled Jimple, that is �rst reatedin an untyped version, where the types of loal variables are unknown. Everyveri�able byteode program has an equivalent untyped Jimple representation.In �nal preparation, prior to applying the typing algorithms outlined in thispaper, a data ow analysis is applied on the Jimple representation, omputingde�nition-use and use-de�nition (du-ud) hains. Then, all loal variables are splitinto multiple variables, one for eah web of du-ud hains. Our example would betransformed to:stak_1_0 = loal_1_0stak_2_0 = loal_2_0stak_1_1 = stak_1_0 iadd stak_2_0loal_1_1 = stak_1_1Note that stak 1 has been split into stak 1 0 and stak 1 1, and similarlyloal 1 has been split into loal 1 0 and loal 1 1. This splitting is quiteimportant, beause a single loal or stak loation in the byteode an refer todi�erent types at di�erent program points. This form of Jimple looks overly long,with many spurious opy statements. In our framework the ode is leaned upusing standard tehniques for opy propagation and elimination.3 Challenges of TypingThe stati typing problem looks quite simple at �rst, but there are subtle pointsthat make the problem diÆult. In this setion we illustrate some diÆulties by2 In reality, the stak analysis, the introdution of new loal variables, and the trans-formation are not as straight-forward as it looks here. This is due to the presene ofsubroutines (the jsr byteode instrution) and double-word values (long, double). Aomplete desription of the byteode to Jimple transformation an be found in [26,25℄.



showing di�erenes between the typing problem for a 3-address representationwith loal variables, and the typing approximation done by the Java veri�er.Another subtle point is how to deal with arrays, and this is dealt with in Setion5.3.1 Delared variable types versus types at program pointsPart of the Java veri�er is a ow analysis that estimates, at eah program point,the type of values stored in eah loal variable and eah stak loation. Thistype information is used to ensure that eah byteode instrution is operatingon data of the orret type. In our typing problem we wish to give a type toeah variable that is orret for all uses and de�nitions of that variable (i.e. thesame type must be orret at multiple program points).Consider Figure 2 where two methods hard and harder illustrate the point.In method hard, the Java veri�er would infer that x has type CA at programpoint s1 and type CB at program point s2. For program point s3 the veri�ermerges the types from eah branh by taking their losest ommon superlass,whih is Objet. Thus, for three di�erent program points, the veri�er has threedi�erent types. However, for our problem, we want to assign one type to loalvariable x. In this ase, it is possible to satisfy all onstraints and assign typeObjet to variable x. However, to �nd onsistent types the whole method mustbe analyzed, the types annot be omputed \on-the-y" as is done in the veri�er.Now onsider method harder in Figure 2. This is similar to the previousase, but now it is not possible to give a single stati type to variable y. Atprogram point s1 y must have type CA and at program point s2 y must havetype CB. In order to statially type this program, it must be transformed toinlude extra opy statements (as one would get by translating from an SSAform) or by introduing type asts. Note that one would not see the harder asein byteode produed from an ordinary Java ompiler, however we have seenases like this in byteode produed by ompilers for other languages.lass CA extends Objet { f(){...} ... }lass CB extends Objet { g(){...} ... }lass MultiDef extends Objet{ void hard(){ <untyped> x;if( ... )s1: x = new CA();elses2: x = new CB();s3: x.toString();}
void harder(){ <untyped> y;if( ... )s1: { y = new CA(); y.f(); }elses2: { y = new CB(); y.g(); }s3: y.toString();}}Fig. 2. Multiple de�nition and use points3.2 Problems due to interfaesInterfaes in Java give a restrited form of multiple inheritane, and this leads toproblems in �nding a stati typing in some ases. Consider the example in Figure



3(a), where the lass hierarhy is de�ned as in Figure 3(b). At program points1 aa has interfae type IC, and at program point s2 aa has interfae type ID.The diÆulty omes at the merge point beause there is no single superinterfaefor IC and ID, rather there are two unrelated hoies, IA and IB. The Javaveri�er will hoose the type Objet, and then hek the invokeinterfae alls atruntime. These runtime heks will pass, and so from the veri�ation point ofview, this program is well-behaved.lass InterfaeDemo{ IC getC() { return new CC(); }ID getD() { return new CD(); }void hardest(){ <untyped> aa;if( ... )s1: aa = getC();elses2: aa = getD();s3: aa.f(); // invokeinterfae IA.fs4: aa.g(); // invokeinterfae IB.g}}
lass CC implements IC{ void f() {}void g() {}}lass CD implements ID{ void f() {}void g() {}}Interfae IA { void f(); }Interfae IB { void g(); }Interfae IC extends IA, IB {}Interfae ID extends IA, IB {}(a) untyped program (b) hierarhyFig. 3. Typing interfaesNow onsider our problem of �nding one stati type for aa. In this ase thereis no solution, even though the byteode is veri�able. If we hose type IA, thenthe type at statement s4 is wrong, if we hose type IB, the type at statements3 is wrong, if we hose type IC, the type at statement s2 is wrong, and if wehose type ID, the type at statement s1 is wrong. In fat, one an not writea Java program like this Jimple program and give a orret stati type to aa.However, remember that our Jimple ode omes from byteode produed fromany ompiler or byteode optimizer, and so this situation may our in veri�ablebyteode.One might be tempted to think that adding extra opies of the variable, likein SSA form would solve this problem as well. However, if we rewrite 3(a) inSSA form, we get:if( ... )s1: aa1 = getC();elses2: aa2 = getD();s3a: aa3 = phi(aa1, aa2);s3: aa3.f(); // invokeinterfae IA.fs4: aa3.g(); // invokeinterfae IB.gClearly this does not solve the problem, there is still no type solution foraa3.



4 Three-Stage Algorithm4.1 Algorithm overviewThe goal of the typing algorithm is to �nd a stati type assignment for all loalvariables suh that all type restritions imposed by Jimple instrutions on theirarguments are met. In order to solve this problem, we abstrat it into a onstraintsystem. For onveniene of implementation (and desription), we represent thisonstraint system as a direted-graph.We initially restrit our type inferene problem to programs that do notinlude arrays, nor array operations. This allows us to illustrate the onstraintsystem.Finding whether there exists or not a stati-type assignment that solves thisonstraint system is similar to solving the UNIFORM-FLAT-SSI problem, whihTiuryn and Pratt have shown to be NP-Complete[24℄. Thus, the overall typingproblem is NP-Hard.Given this omplexity result, we have hosen to design an eÆient algorithmthat may perform program transformations to make the typing problem simpler.We �rst give an overview of our algorithm, and then desribe eah stage in moredetail.An eÆient 3-stage algorithm The algorithm onsists of three stages. The�rst stage onstruts a direted-graph of program onstraints. Then, it mergesthe onneted omponents of the graph, and removes transitive onstraints. Fi-nally, it merges single onstraints. At this point, it sueeds if all variables havevalid types, or it fails if a variable has no type, or if a type error was detetedin the proess.If the �rst stage fails to deliver a solution, the seond stage applies a variablesplitting transformation, and then reruns stage 1 on the transformed program.We have only found one situation where variable splitting is required, and thatis for variables whih are assigned new objets (i.e. for statements of the form x= new A()).If stage 2 fails, then stage 3 proeeds as follows. A new onstraints graph isbuilt, where this graph only enodes variable de�nition onstraints. In this graph,variable use onstraints are not reorded, and interfae inheritane is ignored.In other words, eah interfae has a single parent java.lang.Objet. Then, theonstraints system is solved using the least ommon anestor LCA of lasses andinterfaes (whih is now always unique). One all variables are assigned a type,use onstraints are heked on every original Jimple statement, and type astsare added as needed to satisfy the onstraints. The veri�ability of the originalprogram guarantees that these inserted asts will always sueed at run-time.Handling arrays This setion desribes the basi onstraint system for pro-grams without arrays. We extend the onstraint system, with extra notation forarray onstraints, in Setion 5. We then show how to transform an array probleminto a restrited problem (with no array onstraints), and how to propagate thesolution of the restrited problem bak to the original array problem.



Implementing the algorithm We have implemented the algorithm, but in thispaper we do not disuss implementation details. It is quite straightforward toahieve a simple implementation using eÆient algorithms for strongly-onnetedomponents and fast union on disjoint sets [6℄.4.2 Stage 1Constraint system In this setion, we show how to transform the type in-ferene problem into a onstraint system represented as a direted graph. Intu-itively, the graph represents the onstraints imposed on loal variables by Jimpleinstrutions in the body of a method. In this initial version, we assume that theanalyzed Jimple ode ontains no arrays and no array operations. Further, weinfer primitive types as de�ned for Java byteode [13℄. In partiular, boolean,byte, short, and har are all treated as int. Setion 6 presents an algorithm thatan be used to infer these di�erent integer types.The onstraint graph is a direted graph ontaining the following omponents:1. hard node: represents an expliit type;2. soft node: represents a type variable; and3. direted edge: represents a onstraint between two nodes.A direted edge from node b to node a, represented in the text as a  b,means that b should be assignable to a, using the standard assignment ompati-bility rules of Java [13, 10℄. Simply stated, b should be of the same type as a, ora should be a superlass (or superinterfae) of b.The graph is onstruted via a single pass over the Jimple ode, adding nodesand edges to the graph, as implied by eah Jimple instrution. The olletionof onstraints is best explained by looking at a few representative Jimple state-ments. We will look at the simple assignment statement, the assignment of abinary expression to a loal variable, and a virtual method invoation. All otheronstrutions are similar.A simple assignment is an assignment between two loal variables [a = b℄. Ifvariable b is assigned to variable a, the onstraints of assignment ompatibilityimply that T (a)  T (b), where T (a) and T (b) represent the yet unknown re-spetive types of a and b. So, in this ase, we need to add an edge from T (b) toT (a) (if not already present). This is shown in �gure 4.
T(a)  T(b)Fig. 4. b assigned to aAn assignment with a more omplex right-hand-side results in more on-straints. For example, the statement [a = b + 3℄, generates the following on-straints: T (a) T (b), T (a) int, and int T (b).Our last and most ompliated ase is a method invoation, where onstraintsare generated for the reeiver, the atuals, and the variable on the left-hand-side.For example, onsider [a = b:equals()℄, or with the full type signature: a =virtualinvoke b.[boolean java.lang.Objet.equals(java.lang.Objet)℄ (). We get the



following onstraints, eah involving a hard node: (1) java:lang:Objet T (b),from the delaring lass of equals; and (2) java:lang:Objet  T (), from theargument type in the method signature; and (3) T (a) int, beause the returntype of equals is boolean (we have a single integer type).As shown in �gure 1, our type inferene problem now onsists of mergingsoft nodes with hard nodes, suh that all assignment ompatibility onstraints,represented by edges, are satis�ed. Merging a soft node with a hard node isequivalent to inferring a type for a loal variable. If no suh solution exists (orit is too ostly to �nd), or if a node needs more than one assoiated type (e.g.a soft node is merged with two or more hard nodes), then the �rst stage of theinferene algorithm fails.Conneted omponents Our �rst transformation on the onstraint graphonsists of �nding its onneted omponents (or yles). Every time a onnetedomponent is found, we merge together all nodes of onneted omponent, asillustrated in �gure 5.
AT(a)  T(b)

T(a)
A

 T(b)Fig. 5. Merging onneted omponentsThis is justi�ed beause every node in a onneted omponent is indiretlyassignable to and from any other node in the same onneted omponent. Itfollows that all these nodes must represent the same type, in any solution to thetype inferene problem.We an divide onneted omponents into three kinds. First, there are on-neted omponents without hard nodes. In this ase, nodes are simply merged,and all onstraints of all nodes are propagated to the representative node3. Se-ond, some onneted omponents have a single hard node. In this ase, all softnodes are merged with the hard node, then all onstraints are veri�ed. If anyonstraint an't be satis�ed, the �rst stage of the algorithm fails. Third, it maybe that a onneted omponent has two or more hard nodes. When this ours,the �rst stage fails.In this step, we also take advantage of the veri�er restritions on primitivetypes to merge respetively all values in a transitive relation with any of theprimitive types: int, long, oat, and double. Figure 6 shows an example of prim-itive type merge. It is enough that a node be indiretly assignable to or froma primitive type hard node to be merged with it. This is beause there is noautomati onversion between primitive types.Transitive onstraints One the onneted omponents are removed fromthe onstraint graph, we are left with a direted-ayli-graph (DAG). Our3 Constraints from the representative node to itself are eliminated.



T(a)  T(b)
 T(b)

intT(a)intFig. 6. Merging primitive typesnext transformation onsists of removing redundant onstraints (edges) fromthis DAG by eliminating any transitive onstraints in the graph. A transitiveonstraint from a node y to a node x, is a onstraint x  y suh that thereexists another onstraint p  y where p is not x and there is a path from p tox in the direted graph.Transitive onstraints are removed regardless of the kind of nodes involved(soft, hard), with the exeption of hard-node to hard-node onstraints4. This isshown in �gure 7.
T(a)  T(b) B  T(b)T(a) BFig. 7. Removing transitive onstraintsSingle Constraints Nodes that have only one parent or one hild onstraintan be simpli�ed. A node x is said to have a single parent onstraint to a nodey, if y  x and for any p 6= y there is no onstraint p x. A node x is said tohave a single hild onstraint to a node y, if x  y and for any p 6= y there isno onstraint x p.Our next transformation onsists of merging soft nodes that have single on-straints to other nodes. To improve the auray of our results, we do this usingthe following priority sheme:1. Merge single hild onstraints: Merge x with y when x is a soft node with asingle hild onstraint to any other node y. (Merging with hildren resultsin lower (thus more preise) types in the type hierarhy).2. Merge with least ommon anestor: This is a speial ase. When x is asoft node that only has hild onstraints to hard nodes representing lasstypes, we an safely replae these onstraints by a single hild onstraintto the hard node representing the least ommon anestor of the lass typesinvolved. Then we an merge the resulting single hild onstraint.3. Merge single soft parent onstraints: Merge x with y when x is a soft nodewith a single parent onstraint to another soft node y.4. Merge remaining single parent onstraints: Merge x with y when x is a softnode with a single parent onstraint to another node y.Examples of this are shown in Figures 1 and 8.4 Hard-node to hard-node onstraints represent the type hierarhy.



When a soft node has no expliit parent, we an safely assume that it has thehard node representing java.lang.Objet as parent. We also introdue (as doesthe veri�er) a null type, whih is a desendant of all referene types. When asoft node has no hild, whih means that it was never de�ned, we assume thatit has null as a hild.Stage 1 sueeds if all soft nodes are merged with hard nodes at the end ofthis step. It fails when merging a soft node with a hard node exposes an invalidonstraint, or when there remains a soft node at the end of the step.
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 T(b)Fig. 8. Merging single onstraints4.3 Stage 2In some ases, stage 1 fails to deliver a solution. In our experiments, this onlyhappened in ases similar to the problem exposed in method harder of Figure2. More preisely, the soure of the problem is that Java and other languages usea simple new expression to both reate and initialize a new objet, whereas inbyteode, the same operation is done in two separate steps: the objet is reatedusing the new byteode, but it is then initialized by invoking the <init>methodon the newly reated objet. This is shown in Figure 9, where the method alledjava shows the method as it would appear in Java, and the method alledthree address shows the extra <init> instrutions that are exposed at thebyteode level.lass CAextends Objet{ ... }lass CBextends Objet{ ... }lass MultiDefextends Objet{ void java(){ Objet y;if( ... )y = new CA();elsey = new CB();y.toString();}}

void three_address(){ <untyped> y;if( ... ){ y = new CA();y.[CA.<init>()℄();}else{ y = new CB();y.[CB.<init>()℄();}y.toString();}
void fixed_three_address(){ <untyped> y, y1, y2;if( ... ){ y1 = new CA();y = y1;y1.[CA.<init>℄();}else{ y2 = new CB();y = y2;y2.[CB.<init>℄();}y.toString();}Fig. 9. Objet reation in Java versus 3-address odeIn stage 2, we solve this problem by introduing opy statements at every ob-jet reation site. This is shown in Figure 9 in the method fixed three address.After inserting the extra opy statements, we simply reapply stage 1.



Experimental results show us that this very simple transformation is verye�etive at solving all type inferene diÆulties found in ode generated fromnormal ompilers.4.4 Stage 3It is possible that the previous stages fail and this would happen with the methodhardest in Figure 3. However, urrent ompilers and programs seem not to ex-pose suh diÆult ases. In the future, optimizing ompilers ould get moreaggressive, and programmers might start designing more elaborate interfae hi-erarhies. In order to provide a omplete, yet eÆient type inferene algorithm,we designed this third stage.First, we note that, due to the good behavior guarantees provided by thebyteode veri�er, a very rude solution to all type inferene problems wouldbe to separate loal variables into sets of: referene, double, oat, long andint variables. Then, assign the type java.lang.Objet to all referene variables.Finally, introdue type asts at every loation where use onstraints would beviolated. All the introdued asts are guaranteed to sueed at runtime.But this solution would be somewhat useless in the ontext of an three-address ode optimizer, as type information would be too general, and it wouldnot o�er muh information in deompiled Java programs.Our solution also depends on the good behavior of veri�able byteode, buto�ers a muh improved type auray without sari�ing simpliity. We simplyrebuild the onstraint graph without use onstraints5, and we ignore the interfaehierarhy by assuming that all interfaes have a single parent java.lang.Objet.In this hierarhy, every two types have an LCA.As in stage 1, we merge strongly onneted omponents. But, in this de�-nition onstraints graph, all hard-node to soft-node onstraints are parent on-straints. So, no strongly onneted omponent ontains a hard node. Thus, thisstep will not detet any type error.Then, as in stage 1, we eliminate transitive onstraints and merge single on-straints. When merging single onstraints, we replae multiple hild onstraintsfrom a soft node to hard nodes by a single hild onstraint from the soft nodeto the node representing the LCA type of lasses and interfaes involved. Unlikestage 1, this is guaranteed to deliver a solution.The type assignment of this solution may violate some use onstraints. So,in a last step, we hek every three-address statement for onstraint violations,and introdue type asts as needed.Figure 10 shows this solution applied to the examples in Figure 2 (harder),and Figure 3 (hardest).5 A de�nition onstraint is a onstraint imposed by a de�nition e.g. x = new A is ade�nition of x, and so it introdues a onstraint that would be inluded in this graph.A use onstraint in imposed by a use of a variable e.g. return(x) uses x and so anyonstraints imposed by this use would not be inluded in the graph.



void harder(){ Objet y;if( ... )s1: { y = new CA();((CA) y).f(); }elses2: { y = new CB();((CB) y).g(); }s3: y.toString();}
void hardest(){ Objet aa;if( ... )s1: aa = getC();elses2: aa = getD();s3: ((IA) aa).f(); // invokeinterfae IA.fs4: ((IB) aa).g(); // invokeinterfae IB.g}(a) Figure 2 (harder) solution (b) Figure 3 (hardest) solutionFig. 10. Adding asts5 Array ConstraintsTo infer types in programs using arrays, we introdue array onstraints in theonstraints graph. An array onstraint represents the relation between the typeof an array and the type of its elements. We write A 7! B, to indiate that B isthe element type of array type A (or more simply, A is an array of B). In graphs,we represent these onstraints using dashed direted edges from the array typeto the element type.This simple addition allows us to ollet onstraints for all three-addressstatements. For example, the program fragment a[d℄ = b;  = a; generatesthe following onstraints: a 7! b; d int; and  a.In Java byteode, (A[℄  B[℄) i� (A  B) and (A  B[℄) i� (A � fObjet,Serializable, Cloneableg ). We take advantage of this to build an equivalent on-straints graph without any array onstraints. Then we solve the new problemusing the algorithm presented in Setion 4. Finally, we use this solution to in-fer the type of arrays, reversing our �rst transformation. This transformation isapplied in both stage 1 and stage 3, if needed.We now give a more detailed desription of this proess. First, we omputethe array depth of soft nodes in the onstraints graph using a work list algorithmand the following rules:{ Every hard node has an array depth equal to the number of dimensions ofthe array type it represents, or 0 if it is not an array type.{ null has array depth1. (null is desendant of all types, inluding array typesof all depth6).{ A soft node with one or more hild onstraint has an array depth equal tothe smallest array depth of its hildren.{ A soft node with an array onstraint has a depth equal to one + the depthof its element node.{ When we verify our solution, a soft node with one or more parent onstraintsmust have an array depth greater or equal to the greatest array depth of itsparents7. (This rule is not used in stage 3).6 We ould also use 256, as Java arrays are limited to 255 dimensions.7 If this rule fails, stage 1 fails.



We merge with null all soft nodes with array depth equal to 1. Then, weomplete the onstraints graph by adding all missing array onstraints (and softnodes) so that every node of array depth n greater than 0 (alled array node)has an array onstraint to a node of array depth n� 1.The �nal step in the transformation is to hange all onstraints between arraysoft nodes and other nodes into onstraints between non-array nodes using thefollowing rules:{ Change a onstraint between two nodes of equal depth into a onstraintbetween their respetive element nodes.{ Change a onstraint between two nodes of di�erent depth into a onstraintbetween the element type of lowest depth node and java:lang:Cloneable andjava:io:Serializable.This is illustrated in �gure 11.
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  String[] Fig. 11. Solving array onstraintsThen we use the algorithm of setion 4 to solve the typing problem on thegraph of non-array nodes. Then we use this solution to infer the type of arraynodes. For example, if x 7! y, and y = A, then x = A[℄In order to orretly handle the ase of primitive array types (boolean[℄:::[℄,short[℄:::[℄, har[℄:::[℄, byte[℄:::[℄), we merge these hard nodes with all their same-depth neighbors before onstraints propagation8.6 Integer TypesWhile the algorithm presented in previous setions infers the neessary types foroptimizing three-address ode, these types are not suÆient for Java deompilers.8 This is neessary beause the depth 0 for all these types is int.



All boolean, byte, short, har values are automatially operated upon asint values by the byteode interpreter. Furthermore, the Java veri�er does nothek for onsistent use of these types.It is thus possible to onstrut byteode programs with dubious semantisas:boolean erroneous(int a) // boolean return value{ return a; // valid byteode!}void dubious(){ <unknown> b = erroneous(5);System.out.[void println(int)℄(b); // prints 1 or 5?} We developed an algorithm that infers the basi types boolean, byte,short, har, int for all variables that are assigned an int type by the ini-tial 3-stage algorithm.This algorithm operates in two stages. The �rst stage uses the type hierarhyin Figure 12(a), and onsists of:{ Constraints olletion.{ Merging onneted omponents. (This may fail).{ Merging single relations by aplying the following rules until a �xed point isreahed:� Replaing all multiple hild dependenies between a single soft node andmultiple hard nodes by a dependeny on the least ommon anestor type.� Replaing all multiple parent dependenies between a single soft nodeand multiple hard nodes by a dependeny on the greatest ommon de-sendent type.� Merging a soft node with a single parent or single hild hard node rep-resenting either boolean, byte, short, har or, int.If this stage fails to deliver a solution (remaining soft node, oniting parent orhild onstraints), then a seond stage is performed using the type hierarhy inFigure 12(b) and the following steps:{ De�nition onstraints olletion.{ Merging onneted omponents. (This always sueeds).{ Merging single relation by aplying the following rules until a �xed point isreahed:� Replaing all multiple hild dependenies between a single soft node andmultiple hard nodes by a dependeny on the least ommon anestor type.� Merging a soft node with a single hild hard node.This will always deliver a solution. In the �nal type assignment, [0::127℄ is re-plaed by byte, and [0::32767℄ is replaed by har. Finally, use onstraints areveri�ed and type asts are added as required.The seond stage might introdue narrowing type asts, and thus possiblyhange the semantis of the program. However, this would only happen whenprograms have dubious semantis to begin with. In our experiments, we havenot disovered a ase where stage 2 was needed.
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boolean(a) stage 1 (b) stage 2Fig. 12. Integer type hierarhy7 Experimental ResultsThe typing algorithm presented in this paper has been implemented in the Sootframework[21℄. The typing algorithm aepts untyped Jimple as input, and out-puts typed Jimple. Typed Jimple is used by subsequent analyses inluding lasshierarhy analysis, pointer analysis and a Jimple to Java deompiler.In this setion we present the results of two set of experiments done usingour implementation. The �rst set of experiments was performed to test therobustness of the typing algorithm as well as to gather empirial data about theomplexity of type onstraints in programs ompiled from various languages. Inthe seond experiment, the inferred types of Jimple were used to improve ClassHierarhy Analysis.7.1 Typing Java byteodeWe have applied our typing algorithm on lass �les produed by ompilers of �vedi�erent languages: Java[10℄, Ei�el[20℄, Ada[23℄, Sheme[5℄ and ML[14℄. Table 1shows a seletion of our results to show the general trends. The benhmarks areas follows: java is the Sun's java ompiler, jdk1.1 is everything in Sun's javalass library for jdk1.1, kalman is a numeri Ada benhmark, ompile to  isthe SmallEi�el ompiler (version 0.79), lexgen is a lexer generator used in theStandard ML of New Jersey benhmark suite, and boyer is one of the GabrielSheme benhmarks.Language Benhmark # methods onn. omp. single ons. stage 2 stage 3java: java 1179 383 796 3 0java: jdk1.1 5060 2818 2228 14 0ada: kalman 735 463 262 10 0ei�el: ompile to  7521 1562 5959 0 0ml: lexgen 209 140 69 0 0sheme: boyer 2255 820 1433 2 0Table 1. Required steps



The # methods olumn gives the total number of methods in the benhmark.The next two olumns give the number of methods that ould be typed usingvarious steps of stage 1. The onn. omp. olumn ounts the number of methodsthat ould be ompletely typed by �nding onneted omponents, while thesingle ons. olumn ounts the number of methods that needed both onnetedomponents and the removal of single onstraints. The stage 2 olumn ountsthe number of methods that required the stage 2. The stage 3 olumn ounts thenumber of methods that needed stage 3. It is interesting to note that a signi�antnumber of methods were typed using only onneted omponents, and none ofthe 16959 methods required insertion of type asts (stage 3).7.2 Improving lass hierarhy analysisOne of the motivations for produing typed Jimple was for use in ompileranalyzes and optimizations, and our seond experiment illustrates one suh use.In this experiment we measured the gains in the preision of the onservativeall graph built using lass hierarhy analysis (CHA)[4, 7, 8℄. The basi idea isthat for eah virtual all of the form o:f(a1; a2; : : : ; an), one needs to determineall possible methods f that ould be alled given the reeiver o and a given lasshierarhy. If the all graph is built using untyped Jimple, then type informationprovided by a method signature must be used to estimate the type of the reeivero. This type is orret, but may be too general and thus CHA may be tooonservative about the destination of a virtual (or interfae) all. If the all graphis built using typed Jimple, then eah reeiver has an inferred type provided byour algorithm, and this is often a tighter type than the type in the signature.This improved type information redues the number of possible destinations forthe all, and provides a better all graph on whih further analysis an be made.soure program all-graph edges all-graph edges Redutionlanguage name untyped Jimple (#) typed Jimple (#) (%)java: jak 10583 10228 3java: java 26320 23625 10java: jimple 51350 33464 35ada: rudstone 8151 7806 4ei�el: illness 3966 3778 5ml: nulei 5009 4820 4Table 2. Call graph redutionTable 2 shows the number of all-graph edges for both untyped and typedJimple, and the perent redution due to using typed Jimple. Again we presenta seletion of benhmarks from a variety of ompilers. Note that the very objet-oriented benhmarks like java (10%) and jimple (35%) show signi�ant re-dutions if the stati type of the reeiver is known. This means that subsequentanalyses, inluding run-time type analysis, will start with a signi�antly betterapproximation of the all graph. The other benhmarks show a redution in the3% to 5% range, whih is not as signi�ant. This is mostly due to the fat that



these benhmarks have a muh simpler all graph to begin with, and so there isnot muh room for improvement.These results serve to illustrate one bene�t of typed Jimple. In fat the typesare useful for a wide variety of other analyses inluding: (1) �nding when aninvokeinterfae an be replaed by an invokevirtual all (i.e. when the inferredtype of the reeiver is a lass, but the instrution is an invokeinterfae), (2)deiding when a method an be safely inlined without violating aess rules,(3) giving types to variables in deompiled ode, and (4) as a basis for groupingvariables by type (i.e. a oarse grain run-time type analysis or side-e�et analysisan group variables by delared type).8 Related WorkRelated work has been done in the �elds of type inferene, typed assembly lan-guages, and deompilation.This work is a re�nement of a preliminary report by Gagnon and Hendren[9℄.In our preliminary work we proposed an exponential algorithm to solve diÆultases, whereas in this work we avoid the exponential ase by applying programtransformations, and we introdue the 3-stage approah. Further, this paperaddresses the problem of assigning di�erent integer types.In [12℄, Knoblok and Rehof present a super�ially similar algorithm to typeJava byteode. Their approah is di�erent on many aspets. Their algorithmonly works with programs in SSA form. It onsists of adding new types andhanging the interfae hierarhy so that every two interfaes have a LUB and aSUP in the resulting type lattie. Changing the type hierarhy has unfortunateonsequenes: deompiled programs expose a type hierarhy that di�ers from theoriginal program, the globality of suh a hange makes this algorithm useless ina dynami ode optimizers like HotSpot[22℄. Our algorithm, on the other hand,works with any 3-address ode representation and has no global side e�ets. Itis thus suitable for use in a dynami enviroment.Type inferene is a well known problem. There has been onsiderable work ontype inferene for modern objet-oriented languages. Palsberg and Shwartzbahintrodued the basi type inferene algorithm for Objet-Oriented languages [17℄.Subsequent papers on the subjet extend and improve this initial algorithm [18,1, 2℄. These algorithms infer dynami types, i.e. they desribe the set of possibletypes that an our at runtime. Further, most tehniques need to onsider thewhole program.As we emphasized in the introdution, our type problem is di�erent in thatwe infer stati types. Further, we have a very partiular property of having sometype information from the byteode, inluding the types of methods. This meansthat our type inferene an be intra-proedural, and just onsider one methodbody at a time.Work has been done by Morrisett et al.[16℄ on stak-based typed assemblylanguage. This work di�ers in that their typed assembly language is diretlyprodued from a higher level language. Their work emphasizes the importaneof having type information to perform aggressive optimizations. We agree that



types are important for optimization, and this is one good reason we need ourtype inferene.Our tehnique is related to the type inferene performed by Java deom-pilers[15, 11, 27, 3℄ and other Java ompilers that onvert from byteode to C,or other intermediate representations. Proebsting and Watterson have writtena paper[19℄ on deompilation in Java. Their paper is mainly foused on reon-strution high-level ontrol statements from primitive goto branhes. In theirtext, they wrongfully dismiss the type inferene problem as being solvable bywell known tehniques similar to the Java veri�er's algorithm. As we have shownin this paper, the problem is NP-Hard in general, and some byteode programsrequire program transformations in order to be typeable statially.9 ConlusionIn this paper we presented a stati type inferene algorithm for typing Javabyteode. We based our methods on a 3-address representation of Java byteodealled Jimple. In e�et, we perform the translation of untyped 3-address ode totyped 3-address ode, where all loal variables have been assigned a stati type.We have presented a onstraint system that an be used to represent thetype inferene problem. Using this representation, we developed a simple, fastand e�etive multi-stage algorithm that was shown to handle all methods in aset of programs (and libraries) produed from �ve di�erent soure languages. Weemphasized the di�erene between well behaved byteode as de�ned by the Javaveri�er, and well typed byteode, as required by a stati typing algorithm. Ourexperimental results show that this eÆient analysis an signi�antly improvethe results of further analyzes like Class Hierarhy Analysis.AknowledgmentsWe thank Raja Vall�ee-Rai and other Sable researh group members for theirwork on developing Jimple and the Soot framework.Referenes1. Ole Agesen. Constraint-based type inferene and parametri polymorphism. InBaudouin Le Charlier, editor, SAS'94|Proeedings of the First InternationalStati Analysis Symposium, volume 864 of Leture Notes in Computer Siene,pages 78{100. Springer, September 1994.2. Ole Agesen. The Cartesian produt algorithm: Simple and preise type infereneof parametri polymorphism. In Walter G. Oltho�, editor, ECOOP'95|Objet-Oriented Programming, 9th European Conferene, volume 952 of Leture Notes inComputer Siene, pages 2{26, �Aarhus, Denmark, August 1995. Springer.3. Ahpah Software In. http://zeus.he.net/~pah/produts.html.4. David F. Baon and Peter F. Sweeney. Fast stati analysis of C++ virtual funtionalls. In Proeedings of the Conferene on Objet-Oriented Programming Systems,Languages, and Appliations, volume 31 of ACM SIGPLAN Noties, pages 324{341, New York, Otober 1996. ACM Press.5. Per Bothner. Kawa - ompiling dynami languages to the Java VM, 1998.
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