Efficient Inference of Static Types for Java
Bytecode*

Etienne M. Gagnon, Laurie J. Hendren and Guillaume Marceau

Sable Research Group, School of Computer Science
McGill University, Montreal, Canada
[gagnon,hendren,gmarceau] @sable.mcgill.ca

Abstract. In this paper, we present an efficient and practical algorithm
for inferring static types for local variables in a 3-address, stackless, rep-
resentation of Java bytecode.

By decoupling the type inference problem from the low level bytecode
representation, and abstracting it into a constraint system, we show that
there exists verifiable bytecode that cannot be statically typed. Further,
we show that, without transforming the program, the static typing prob-
lem is NP-hard. In order to get a practical approach we have developed
an algorithm that works efficiently for the usual cases and then applies
efficient program transformations to simplify the hard cases.

We have implemented this algorithm in the Soot framework. Our ex-
perimental results show that all of the 17,000 methods used in our tests
were successfully typed, 99.8% of those required only the first stage, 0.2%
required the second stage, and no methods required the third stage.

1 Introduction

Java bytecode is rapidly becoming an important intermediate representation.
This is predominately because Java bytecode interpreters and JIT-compilers are
becoming more common, and such interpreters / compilers are now a standard
part of popular web browsers. Thus, Java bytecode (henceforth referred to as
simply bytecode) has become a target representation for a wide variety of com-
pilers, including compilers for Ada [23], ML [14], Scheme [5], and Eiffel [20].
Bytecode has many interesting properties, including some guarantees about
verifiable bytecode that ensure that verified bytecode programs are well-behaved.
For example, verifiable bytecode guarantees that each method invocation has the
correct number and type of arguments on the Java expression stack. Verification
is done partly statically via a flow analysis of the bytecode, and partly via checks
that are executed at runtime. As part of the static verification, a flow analysis
is used to estimate the type of each local variable and each location on the
expression stack, for each program point. However, as we will show in section 3
this is not the same typing problem as the one addressed in this paper.
Although bytecode has many good features, it is not an ideal representation
for program analysis / optimization or program understanding. For analysis /

* This work has been supported in part by FCAR and NSERC.

optimization, the expression stack complicates both the analyses and subsequent,
transformations. In addition, the stack-based representation does not map nicely
to real register-based architectures. For these sorts of optimizing compiler appli-
cations a more traditional three-address code is preferable, and is used in many
optimizing Java compilers. For program understanding, the bytecode is too low-
level, and one would like to present a higher-level view to the programmer. One
example of a high-level representation is decompiling bytecode back to Java.
Note that to be generally useful such decompilers should work for any verifiable
bytecode, not just bytecode produced by Java compilers.!

When bytecode is translated to a three-address representation or high-level
representation it is important that all variables should be given a static type
that is correct for all uses of that variable. For a decompiler, each variable needs
to have a declared type that is type correct for all uses of that variable. For
three-address representations, the type of a variable can be used to improve
analysis and optimization. We have found having types for local variables to be
indispensable in our compiler, and one example use, improving the quality of
the call graph, is presented in section 7.2.

In this paper, we address the problem of inferring a static type for each vari-
able in a three-address representation of bytecode called Jimple[26, 25]. Jimple is
part of the Soot compiler framework that is used for both compiler optimizations
and decompilation. It is a fairly standard representation, so our results should
apply to other similar representations.

In order to give a feel for the problem, consider the simple example in Figure
1. Figure 1(a) gives an untyped method in a Jimple-like intermediate represen-
tation. Note that there is some type information which comes directly from the
bytecode. For example, the signature of method f is specified in the bytecode, so
we know a fixed type for the return value, and we know some type information
from new instructions. However, local variables, such as a, b, ¢ and s do not
have an explicit type in the bytecode. We can determine correct types for these
variables by collecting type constraints. Figure 1(b) shows the class hierarchy,
and figure 1(c) shows the constraints imposed by each statement. We formulate
the typing problem as a graph problem. Figure 1(d) shows a graph that repre-
sents both the class hierarchy and the type constraints on the variables. Types
in the hierarchy are shown as double circles which we call hard nodes, while type
variables are shown as single circles which we call soft nodes. A solution to the
typing problem is found by coalescing nodes together. If nodes can be coalesced
so that each coalesced node contains exactly one hard node, then we have found
a solution to the typing problem. Figure 1(e) shows one possible coalescing of
the graph, and this corresponds to the typed method in Figure 1(e). Note that
there may be more than one correct solution. For this example another correct
solution would be to assign a, b and ¢ the type Object. In general, we prefer

! Also note that by combining a compiler that translates from a high-level language X
to bytecode with a decompiler from bytecode to Java, one has a tool for translating
from X to Java.

a typing that gives more specific types since this will help more in subsequent

analyses.

public java.lang
{

<unknown> a;
<unknown> b;
<unknown> c;
<unknown> s;

.String £()

class A extends Object

{...1}

class B extends A

sl: ¢ = new C(); { public String toString()
s2: b = new B(); }---

if (...)
s8: el:e= © class C extends A
s4: a = b; { public String toString()
sb: s = a.toString(); } s

s6: return(s);

(b) class hierarchy

(a) untyped method

si: T(c) « C
s2: T(b) « B
s3: T(a) < T'(c)

s4: T(a) < T(b)

s5: Object + T'(a)
T(s) « String

s6: String < T(s)

(c) constraints

public java.lang.String f()

{ Aa;
B b;
C c;
java.lang.String s;
sl: ¢ = new CQ);
s2: b = new B();
if (...)
s3: a = c;
else
s4: a = b;

sb: s = a.téString();
s6: return(s);

(e) solution

(f) typed method

Fig. 1. Simple example of static typing

The type inference problem would seem easy at first glance, and for our
simple example it would be quite easy to deduce types during the bytecode
to Jimple translation. However, there are three points that make the general
typing problem difficult: (1) the program point specific nature of the bytecode
verification, (2) multiple inheritance due to interfaces, and (3) the correct typing

of arrays. In fact, we will show that the type inference problem is NP-hard.
However, we propose an efficient, polynomial time, multi-stage algorithm that
bypasses this complexity by performing program transformations that simplify
the type inference problem, without affecting program semantics, when a difficult
case is encountered. Our algorithm performs two kinds of transformations: (1)
variable splitting at object creation sites, and (2) insertion of type casts that
are guaranteed to succeed at run-time. Our experimental results show that all of
the 16,492 methods extracted from 2,787 JDK 1.1 and SPEC jvm98 classes were
typed by our algorithm, without inserting any type casts. Variable splitting was
only applied in 29 methods.

It is important to contrast this work, where we find a static type consistent
with all uses of a variable, with other type inference analyses where the main
focus is to statically infer the set of dynamic (or concrete) types that a variable
could hold, at a particular program point at run-time [17,18,1,2]. We will call
such algorithms run-time type analysis to distinguish them from our static-type
analysis. For our example program in Figure 1(a), run-time type analysis would
infer that the variable a at program point s1 could have type B, whereas at
program point s5 a could have types {B, C}. In our typing problem we need to
find one static type that is consistent with all uses of a. As we show in section
7.2, our static type is actually a reasonably good starting point for other analyses,
including a run-time type analysis we have built on top of typed Jimple.

Our paper is structured as follows. In section 2 we present our three-address
representation. In section 3 we show some examples to demonstrate why this
typing problem is difficult. In section 4, we define the general static type inference
problem, and give the main algorithm for programs without arrays. In section 5
we present extensions to our algorithm to handle arrays. In section 6 we show
how to infer integer types. Section 7 contains our experimental results. Finally,
we review related work in section 8 and present our conclusions in section 9.

2 A 3-Address Representation: Jimple

We assume that the reader is already familiar with Java bytecode. A complete
description of the class file format can be found in [13]. Furthermore, we assume
that all analyzed bytecode would be successfully verified by the Java bytecode
verifier[13]. It is important to remember that the verifiability of the code implies
that it is well behaved, but it does not imply that it is well typed.

While the bytecode format seems of great interest for implementing an inter-
preter, it is not well suited for reasoning about bytecode, since many operands
are on the stack and thus do not have explicit names. In order to alleviate this
difficulty, many Java optimizing compilers convert bytecode to a more traditional
3-address-code, where all stack-based operations are transformed into local vari-
able based operations. This is made possible by the conditions met by verified
bytecode, most notably: the constant stack depth at each program point, and
the explicit maximum depth of stack and number of local variables used in the
body of a method.

The bytecode to 3-address-code transformation is done by computing the
stack depth at each program point, introducing a new local variable for each

stack depth, and then rewriting the instruction using the new local variables?.
For example:

iload_1 (stack depth before 0 after 1)
iload_2 (stack depth before 1 after 2)
iadd (stack depth before 2 after 1)
istore_1 (stack depth before 1 after 0)

is transformed into:

stack_1 = local_1
stack_2 = local_2
stack_1 = stack_1 iadd stack_2
local_1 = stack_1

In producing the 3-address-code it is simple to retain all type information
contained in bytecode instructions. So, for instance, every virtual method con-
tains the complete signature of the called method, as well as the name of the
class declaring the method. However, as there are no explicit types for locals or
stack locations, it is more difficult to find types for these variables. In our com-
piler we produce a 3-address representation called Jimple, that is first created
in an untyped version, where the types of local variables are unknown. Every
verifiable bytecode program has an equivalent untyped Jimple representation.

In final preparation, prior to applying the typing algorithms outlined in this
paper, a data flow analysis is applied on the Jimple representation, computing
definition-use and use-definition (du-ud) chains. Then, all local variables are split
into multiple variables, one for each web of du-ud chains. Our example would be
transformed to:

stack_1_0 = local_1_0
stack_2_0 = local_2_0
stack_1_1 = stack_1_0 iadd stack_2_0
local_1_1 = stack_1_1

Note that stack_1 has been split into stack_1_0 and stack_1_1, and similarly
local_1 has been split into local 1.0 and local_1_1. This splitting is quite
important, because a single local or stack location in the bytecode can refer to
different types at different program points. This form of Jimple looks overly long,
with many spurious copy statements. In our framework the code is cleaned up
using standard techniques for copy propagation and elimination.

3 Challenges of Typing

The static typing problem looks quite simple at first, but there are subtle points
that make the problem difficult. In this section we illustrate some difficulties by

2 In reality, the stack analysis, the introduction of new local variables, and the trans-
formation are not as straight-forward as it looks here. This is due to the presence of
subroutines (the jsr bytecode instruction) and double-word values (long, double). A
complete description of the bytecode to Jimple transformation can be found in [26,
25].

showing differences between the typing problem for a 3-address representation
with local variables, and the typing approximation done by the Java verifier.
Another subtle point is how to deal with arrays, and this is dealt with in Section
5.

3.1 Declared variable types versus types at program points

Part of the Java verifier is a flow analysis that estimates, at each program point,
the type of values stored in each local variable and each stack location. This
type information is used to ensure that each bytecode instruction is operating
on data of the correct type. In our typing problem we wish to give a type to
each variable that is correct for all uses and definitions of that variable (i.e. the
same type must be correct at multiple program points).

Consider Figure 2 where two methods hard and harder illustrate the point.
In method hard, the Java verifier would infer that x has type CA at program
point s1 and type CB at program point s2. For program point s3 the verifier
merges the types from each branch by taking their closest common superclass,
which is Object. Thus, for three different program points, the verifier has three
different, types. However, for our problem, we want to assign one type to local
variable x. In this case, it is possible to satisfy all constraints and assign type
Object to variable x. However, to find consistent types the whole method must
be analyzed, the types cannot be computed “on-the-fly” as is done in the verifier.

Now consider method harder in Figure 2. This is similar to the previous
case, but now it is not possible to give a single static type to variable y. At
program point s1 y must have type CA and at program point s2 y must have
type CB. In order to statically type this program, it must be transformed to
include extra copy statements (as one would get by translating from an SSA
form) or by introducing type casts. Note that one would not see the harder case
in bytecode produced from an ordinary Java compiler, however we have seen
cases like this in bytecode produced by compilers for other languages.

class CA extends Object { £fO{...} ... }
class CB extends Object { gO{...} ... }
class MultiDef extends Object void harder()
{ void hard() { <untyped> y;
{ <untyped> x; if(...)
if(...) sl: {y =new CAQ); y.£O; }
sl: x = new CAQ); else
else s2: {y =new CBO; y.gO; }
s2: x = mnew CB(); s3: y.toString();
s3: x.toString(); }
} }

Fig. 2. Multiple definition and use points

3.2 Problems due to interfaces

Interfaces in Java give a restricted form of multiple inheritance, and this leads to
problems in finding a static typing in some cases. Consider the example in Figure

3(a), where the class hierarchy is defined as in Figure 3(b). At program point
s1 aa has interface type IC, and at program point s2 aa has interface type ID.
The difficulty comes at the merge point because there is no single superinterface
for IC and ID, rather there are two unrelated choices, IA and IB. The Java
verifier will choose the type Object, and then check the invokeinterface calls at
runtime. These runtime checks will pass, and so from the verification point of
view, this program is well-behaved.

class InterfaceDemo class CC implements IC
{ IC getC() { return new CC(); } { void £O) {2}
ID getD() { return new CD(); } void g() {}
}
void hardest ()
{ <untyped> aa; class CD implements ID
{ void £O {}
if(...) void g() {}
sl: aa = getC(); }
else
s2: aa = getD();

s3: aa.f(); // invokeinterface IA.f Interface IA { void f(); }
s4: aa.g(); // invokeinterface IB.g Interface IB { void g(;
} Interface IC extends IA, IB {}
} Interface ID extends IA, IB {}
(a) untyped program (b) hierarchy

Fig. 3. Typing interfaces

Now consider our problem of finding one static type for aa. In this case there
is no solution, even though the bytecode is verifiable. If we chose type IA, then
the type at statement s4 is wrong, if we chose type IB, the type at statement
s3 is wrong, if we chose type IC, the type at statement s2 is wrong, and if we
chose type ID, the type at statement s1 is wrong. In fact, one can not write
a Java program like this Jimple program and give a correct static type to aa.
However, remember that our Jimple code comes from bytecode produced from
any compiler or bytecode optimizer, and so this situation may occur in verifiable
bytecode.

One might be tempted to think that adding extra copies of the variable, like
in SSA form would solve this problem as well. However, if we rewrite 3(a) in
SSA form, we get:

ifC...0)

si: aal = getCQ);
else

s2: aa2 = getD();

s3a: aa3 = phi(aal, aa2);
s3: aa3.f(); // invokeinterface IA.f
s4: aa3.g(); // invokeinterface IB.g

Clearly this does not solve the problem, there is still no type solution for
aa3.

4 Three-Stage Algorithm

4.1 Algorithm overview

The goal of the typing algorithm is to find a static type assignment for all local
variables such that all type restrictions imposed by Jimple instructions on their
arguments are met. In order to solve this problem, we abstract it into a constraint
system. For convenience of implementation (and description), we represent this
constraint system as a directed-graph.

We initially restrict our type inference problem to programs that do not
include arrays, nor array operations. This allows us to illustrate the constraint
system.

Finding whether there exists or not a static-type assignment that solves this
constraint system is similar to solving the UNTFORM-FLAT-SSI problem, which
Tiuryn and Pratt have shown to be NP-Complete[24]. Thus, the overall typing
problem is NP-Hard.

Given this complexity result, we have chosen to design an efficient algorithm
that may perform program transformations to make the typing problem simpler.
We first give an overview of our algorithm, and then describe each stage in more
detail.

An efficient 3-stage algorithm The algorithm consists of three stages. The
first stage constructs a directed-graph of program constraints. Then, it merges
the connected components of the graph, and removes transitive constraints. Fi-
nally, it merges single constraints. At this point, it succeeds if all variables have
valid types, or it fails if a variable has no type, or if a type error was detected
in the process.

If the first stage fails to deliver a solution, the second stage applies a variable
splitting transformation, and then reruns stage 1 on the transformed program.
We have only found one situation where variable splitting is required, and that
is for variables which are assigned new objects (i.e. for statements of the form x
= new A(Q)).

If stage 2 fails, then stage 3 proceeds as follows. A new constraints graph is
built, where this graph only encodes variable definition constraints. In this graph,
variable use constraints are not recorded, and interface inheritance is ignored.
In other words, each interface has a single parent java.lang.0bject. Then, the
constraints system is solved using the least common ancestor LCA of classes and
interfaces (which is now always unique). Once all variables are assigned a type,
use constraints are checked on every original Jimple statement, and type casts
are added as needed to satisfy the constraints. The verifiability of the original
program guarantees that these inserted casts will always succeed at run-time.

Handling arrays This section describes the basic constraint system for pro-
grams without arrays. We extend the constraint system, with extra notation for
array constraints, in Section 5. We then show how to transform an array problem
into a restricted problem (with no array constraints), and how to propagate the
solution of the restricted problem back to the original array problem.

Implementing the algorithm We have implemented the algorithm, but in this
paper we do not discuss implementation details. It is quite straightforward to
achieve a simple implementation using efficient algorithms for strongly-connected
components and fast union on disjoint sets [6].

4.2 Stage 1

Constraint system In this section, we show how to transform the type in-
ference problem into a constraint system represented as a directed graph. Intu-
itively, the graph represents the constraints imposed on local variables by Jimple
instructions in the body of a method. In this initial version, we assume that the
analyzed Jimple code contains no arrays and no array operations. Further, we
infer primitive types as defined for Java bytecode [13]. In particular, boolean,
byte, short, and char are all treated as int. Section 6 presents an algorithm that
can be used to infer these different integer types.

The constraint graph is a directed graph containing the following components:

1. hard node: represents an explicit type;
2. soft node: represents a type variable; and
3. directed edge: represents a constraint between two nodes.

A directed edge from node b to node a, represented in the text as a + b,
means that b should be assignable to a, using the standard assignment compati-
bility rules of Java [13,10]. Simply stated, b should be of the same type as a, or
a should be a superclass (or superinterface) of b.

The graph is constructed via a single pass over the Jimple code, adding nodes
and edges to the graph, as implied by each Jimple instruction. The collection
of constraints is best explained by looking at a few representative Jimple state-
ments. We will look at the simple assignment statement, the assignment of a
binary expression to a local variable, and a virtual method invocation. All other
constructions are similar.

A simple assignment is an assignment between two local variables [a = b]. If
variable b is assigned to variable a, the constraints of assignment compatibility
imply that T'(a) + T'(b), where T'(a) and T'(b) represent the yet unknown re-
spective types of a and b. So, in this case, we need to add an edge from T'(b) to
T'(a) (if not already present). This is shown in figure 4.

Fig. 4. b assigned to a

An assignment with a more complex right-hand-side results in more con-
straints. For example, the statement [a = b + 3], generates the following con-
straints: T'(a) « T'(b), T(a) « int, and int < T'(b).

Our last and most complicated case is a method invocation, where constraints
are generated for the receiver, the actuals, and the variable on the left-hand-side.
For example, consider [a = b.equals(c)], or with the full type signature: a =

virtualinvoke b. [boolean java.lang. Object. equals(java.lang. Object)] (¢). We get the

following constraints, each involving a hard node: (1) java.lang.Object « T (b),
from the declaring class of equals; and (2) java.lang.Object + T'(c¢), from the
argument type in the method signature; and (3) T'(a) < int, because the return
type of equals is boolean (we have a single integer type).

As shown in figure 1, our type inference problem now consists of merging
soft nodes with hard nodes, such that all assignment compatibility constraints,
represented by edges, are satisfied. Merging a soft node with a hard node is
equivalent to inferring a type for a local variable. If no such solution exists (or
it is too costly to find), or if a node needs more than one associated type (e.g.
a soft node is merged with two or more hard nodes), then the first stage of the
inference algorithm fails.

Connected components Our first transformation on the constraint graph
consists of finding its connected components (or cycles). Every time a connected
component is found, we merge together all nodes of connected component, as
illustrated in figure 5.

@) = @)

Fig. 5. Merging connected components

This is justified because every node in a connected component is indirectly
assignable to and from any other node in the same connected component. It
follows that all these nodes must represent the same type, in any solution to the
type inference problem.

We can divide connected components into three kinds. First, there are con-
nected components without hard nodes. In this case, nodes are simply merged,
and all constraints of all nodes are propagated to the representative node®. Sec-
ond, some connected components have a single hard node. In this case, all soft
nodes are merged with the hard node, then all constraints are verified. If any
constraint can’t be satisfied, the first stage of the algorithm fails. Third, it may
be that a connected component has two or more hard nodes. When this occurs,
the first stage fails.

In this step, we also take advantage of the verifier restrictions on primitive
types to merge respectively all values in a transitive relation with any of the
primitive types: int, long, float, and double. Figure 6 shows an example of prim-
itive type merge. It is enough that a node be indirectly assignable to or from
a primitive type hard node to be merged with it. This is because there is no
automatic conversion between primitive types.

Transitive constraints Once the connected components are removed from
the constraint graph, we are left with a directed-acyclic-graph (DAG). Our

3 Constraints from the representative node to itself are eliminated.

O = ®

Fig. 6. Merging primitive types

next transformation consists of removing redundant constraints (edges) from
this DAG by eliminating any transitive constraints in the graph. A transitive
constraint from a node y to a node z, is a constraint z < y such that there
exists another constraint p < y where p is not x and there is a path from p to
z in the directed graph.

Transitive constraints are removed regardless of the kind of nodes involved
(soft, hard), with the exception of hard-node to hard-node constraints®. This is
shown in figure 7.

\Q/@ = (w2}

Fig. 7. Removing transitive constraints

Single Constraints Nodes that have only one parent or one child constraint
can be simplified. A node z is said to have a single parent constraint to a node
y, if y « x and for any p # y there is no constraint p < z. A node z is said to
have a single child constraint to a node y, if < y and for any p # y there is
no constraint z < p.

Our next transformation consists of merging soft nodes that have single con-
straints to other nodes. To improve the accuracy of our results, we do this using
the following priority scheme:

1. Merge single child constraints: Merge & with y when z is a soft node with a
single child constraint to any other node y. (Merging with children results
in lower (thus more precise) types in the type hierarchy).

2. Merge with least common ancestor: This is a special case. When z is a
soft node that only has child constraints to hard nodes representing class
types, we can safely replace these constraints by a single child constraint
to the hard node representing the least common ancestor of the class types
involved. Then we can merge the resulting single child constraint.

3. Merge single soft parent constraints: Merge x with y when z is a soft node
with a single parent constraint to another soft node y.

4. Merge remaining single parent constraints: Merge = with y when z is a soft
node with a single parent constraint to another node y.

Examples of this are shown in Figures 1 and 8.

* Hard-node to hard-node constraints represent the type hierarchy.

When a soft node has no explicit parent, we can safely assume that it has the
hard node representing java.lang. Object as parent. We also introduce (as does
the verifier) a null type, which is a descendant of all reference types. When a
soft node has no child, which means that it was never defined, we assume that
it has null as a child.

Stage 1 succeeds if all soft nodes are merged with hard nodes at the end of
this step. It fails when merging a soft node with a hard node exposes an invalid
constraint, or when there remains a soft node at the end of the step.

= (o) = ()

Fig. 8. Merging single constraints

4.3 Stage 2

In some cases, stage 1 fails to deliver a solution. In our experiments, this only
happened in cases similar to the problem exposed in method harder of Figure
2. More precisely, the source of the problem is that Java and other languages use
a simple new expression to both create and initialize a new object, whereas in
bytecode, the same operation is done in two separate steps: the object is created
using the new bytecode, but it is then initialized by invoking the <init> method
on the newly created object. This is shown in Figure 9, where the method called
java shows the method as it would appear in Java, and the method called
three_address shows the extra <init> instructions that are exposed at the
bytecode level.

class CA
?xtendi Object void fixed_three_address()
class CB void three_address() { <untyped> y, yil, y2;
{ <untyped> y; if(...)

extends Object

if(...) { yl = new CAQ);
2 . {y= mnew CAQ; y = yi;
Cl:iiezgitag‘;zct y.[CA.<init>010; yi.[CA.<init>1Q;
{ void java() ¥ ¥
{ Object y; else else
P () {y = new CBQ); { y2 = new CBQ);
< new CAQ): y.[CB.<init>()]1 O ; y = y2;
oloe : y2. [CB.<init>1 ();
vy = new CBO); y.toString();)
y.toString(); y.toString();
}
}

Fig. 9. Object creation in Java versus 3-address code

In stage 2, we solve this problem by introducing copy statements at every ob-
ject creation site. This is shown in Figure 9 in the method fixed three_address.
After inserting the extra copy statements, we simply reapply stage 1.

Experimental results show us that this very simple transformation is very
effective at solving all type inference difficulties found in code generated from
normal compilers.

4.4 Stage 3

It is possible that the previous stages fail and this would happen with the method
hardest in Figure 3. However, current compilers and programs seem not to ex-
pose such difficult cases. In the future, optimizing compilers could get more
aggressive, and programmers might start designing more elaborate interface hi-
erarchies. In order to provide a complete, yet efficient type inference algorithm,
we designed this third stage.

First, we note that, due to the good behavior guarantees provided by the
bytecode verifier, a very crude solution to all type inference problems would
be to separate local variables into sets of: reference, double, float, long and
int variables. Then, assign the type java.lang. Object to all reference variables.
Finally, introduce type casts at every location where use constraints would be
violated. All the introduced casts are guaranteed to succeed at runtime.

But this solution would be somewhat useless in the context of an three-
address code optimizer, as type information would be too general, and it would
not offer much information in decompiled Java programs.

Our solution also depends on the good behavior of verifiable bytecode, but
offers a much improved type accuracy without sacrificing simplicity. We simply
rebuild the constraint graph without use constraints®, and we ignore the interface
hierarchy by assuming that all interfaces have a single parent java.lang. Object.
In this hierarchy, every two types have an LCA.

As in stage 1, we merge strongly connected components. But, in this defi-
nition constraints graph, all hard-node to soft-node constraints are parent con-
straints. So, no strongly connected component contains a hard node. Thus, this
step will not detect any type error.

Then, as in stage 1, we eliminate transitive constraints and merge single con-
straints. When merging single constraints, we replace multiple child constraints
from a soft node to hard nodes by a single child constraint from the soft node
to the node representing the LCA type of classes and interfaces involved. Unlike
stage 1, this is guaranteed to deliver a solution.

The type assignment of this solution may violate some use constraints. So,
in a last step, we check every three-address statement for constraint violations,
and introduce type casts as needed.

Figure 10 shows this solution applied to the examples in Figure 2 (harder)
and Figure 3 (hardest).

3

5 A definition constraint is a constraint imposed by a definition e.g. z = new A is a
definition of z, and so it introduces a constraint that would be included in this graph.
A use constraint in imposed by a use of a variable e.g. return(z) uses z and so any
constraints imposed by this use would not be included in the graph.

void harder() void hardest ()

{ Object y; { Object aa;
if(...0) _
£C ...)
si: {y = new CAQ; AL .
((ca) y).£0O; ¥ sl: el:: getCQ);
else _ .
s2: {y = new CB(; s2: aa = getD();
gt LR s3: ((IA) aa).f(); // invokeinterface IA.f

Ssi y-toString(); s4: ((IB) aa).g(); // invokeinterface IB.g

}
(a) Figure 2 (harder) solution (b) Figure 3 (hardest) solution

Fig. 10. Adding casts

5 Array Constraints

To infer types in programs using arrays, we introduce array constraints in the
constraints graph. An array constraint represents the relation between the type
of an array and the type of its elements. We write A — B, to indicate that B is
the element type of array type A (or more simply, A is an array of B). In graphs,
we represent these constraints using dashed directed edges from the array type
to the element type.

This simple addition allows us to collect constraints for all three-address
statements. For example, the program fragment a[d] = b; c = a; generates
the following constraints: a — b,d < int, and ¢ < a.

In Java bytecode, (A[] + B][]) iff (A «+ B) and (A « B]]) iff (A4 € {Object,
Serializable, Cloneable}). We take advantage of this to build an equivalent con-
straints graph without any array constraints. Then we solve the new problem
using the algorithm presented in Section 4. Finally, we use this solution to in-
fer the type of arrays, reversing our first transformation. This transformation is
applied in both stage 1 and stage 3, if needed.

We now give a more detailed description of this process. First, we compute
the array depth of soft nodes in the constraints graph using a work list algorithm
and the following rules:

— Every hard node has an array depth equal to the number of dimensions of
the array type it represents, or 0 if it is not an array type.

— null has array depth oo. (nullis descendant of all types, including array types
of all depth").

— A soft node with one or more child constraint has an array depth equal to
the smallest array depth of its children.

— A soft node with an array constraint has a depth equal to one + the depth
of its element node.

— When we verify our solution, a soft node with one or more parent constraints
must have an array depth greater or equal to the greatest array depth of its
parents”. (This rule is not used in stage 3).

& We could also use 256, as Java arrays are limited to 255 dimensions.
" If this rule fails, stage 1 fails.

We merge with null all soft nodes with array depth equal to oc. Then, we
complete the constraints graph by adding all missing array constraints (and soft
nodes) so that every node of array depth n greater than 0 (called array node)
has an array constraint to a node of array depth n — 1.

The final step in the transformation is to change all constraints between array
soft nodes and other nodes into constraints between non-array nodes using the
following rules:

— Change a constraint between two nodes of equal depth into a constraint

between their respective element nodes.
— Change a constraint between two nodes of different depth into a constraint

between the element type of lowest depth node and java.lang.Cloneable and
java.io.Serializable.

This is illustrated in figure 11.

@0 o @, O

a = new String[]; f ‘

i Y
b=a; o
e O @ ®

T(a) == String[]

= N = T(b) == String[]

Fig. 11. Solving array constraints

Then we use the algorithm of section 4 to solve the typing problem on the
graph of non-array nodes. Then we use this solution to infer the type of array
nodes. For example, if ¢ — y, and y = A, then z = A]]

In order to correctly handle the case of primitive array types (boolean]]...[],
short[]...[], char[]...[], byte[]...[]), we merge these hard nodes with all their same-
depth neighbors before constraints propagation®.

6 Integer Types

While the algorithm presented in previous sections infers the necessary types for
optimizing three-address code, these types are not sufficient for Java decompilers.

® This is necessary because the depth 0 for all these types is int.

All boolean, byte, short, char values are automatically operated upon as
int values by the bytecode interpreter. Furthermore, the Java verifier does not
check for consistent use of these types.

It is thus possible to construct bytecode programs with dubious semantics
as:

boolean erroneous(int a) // boolean return value
{ return a; // valid bytecode!

}
void dubious()
{ <unknown> b = erroneous(5);
System.out. [void println(int)](b); // prints 1 or 57

We developed an algorithm that infers the basic types boolean, byte,
short, char, int for all variables that are assigned an int type by the ini-
tial 3-stage algorithm.

This algorithm operates in two stages. The first stage uses the type hierarchy
in Figure 12(a), and consists of:

— Constraints collection.
— Merging connected components. (This may fail).
— Merging single relations by aplying the following rules until a fixed point is
reached:
e Replacing all multiple child dependencies between a single soft node and
multiple hard nodes by a dependency on the least common ancestor type.
e Replacing all multiple parent dependencies between a single soft node
and multiple hard nodes by a dependency on the greatest common de-
scendent type.
e Merging a soft node with a single parent or single child hard node rep-
resenting either boolean, byte, short, char or, int.

If this stage fails to deliver a solution (remaining soft node, conflicting parent or
child constraints), then a second stage is performed using the type hierarchy in
Figure 12(b) and the following steps:

— Definition constraints collection.
— Merging connected components. (This always succeeds).
— Merging single relation by aplying the following rules until a fixed point is
reached:
e Replacing all multiple child dependencies between a single soft node and
multiple hard nodes by a dependency on the least common ancestor type.
e Merging a soft node with a single child hard node.

This will always deliver a solution. In the final type assignment, [0..127] is re-
placed by byte, and [0..32767] is replaced by char. Finally, use constraints are
verified and type casts are added as required.

The second stage might introduce narrowing type casts, and thus possibly
change the semantics of the program. However, this would only happen when
programs have dubious semantics to begin with. In our experiments, we have
not discovered a case where stage 2 was needed.

Fig. 12. Integer type hierarchy

7 Experimental Results

The typing algorithm presented in this paper has been implemented in the Soot
framework[21]. The typing algorithm accepts untyped Jimple as input, and out-
puts typed Jimple. Typed Jimple is used by subsequent analyses including class
hierarchy analysis, pointer analysis and a Jimple to Java decompiler.

In this section we present the results of two set of experiments done using
our implementation. The first set of experiments was performed to test the
robustness of the typing algorithm as well as to gather empirical data about the
complexity of type constraints in programs compiled from various languages. In
the second experiment, the inferred types of Jimple were used to improve Class
Hierarchy Analysis.

7.1 Typing Java bytecode

We have applied our typing algorithm on class files produced by compilers of five
different languages: Java[10], Eiffel[20], Ada[23], Scheme[5] and ML[14]. Table 1
shows a selection of our results to show the general trends. The benchmarks are
as follows: javac is the Sun’s javac compiler, jdk1.1 is everything in Sun’s java
class library for jdk1.1, kalman is a numeric Ada benchmark, compile_to_c is
the SmallEiffel compiler (version 0.79), lexgen is a lexer generator used in the
Standard ML of New Jersey benchmark suite, and boyer is one of the Gabriel
Scheme benchmarks.

|Language Benchmark ||# methods|conn. comp.|single Cons.|stage 2|stage 3|

java: javac 1179 383 796 3 0
java: jdk1.1 5060 2818 2228 14 0
ada: kalman 735 463 262 10 0
eiffel: compile_to_c 7521 1562 5959 0 0
ml: lexgen 209 140 69 0 0
scheme: boyer 2255 820 1433 2 0

Table 1. Required steps

The # methods column gives the total number of methods in the benchmark.
The next two columns give the number of methods that could be typed using
various steps of stage 1. The conn. comp. column counts the number of methods
that could be completely typed by finding connected components, while the
single cons. column counts the number of methods that needed both connected
components and the removal of single constraints. The stage 2 column counts
the number of methods that required the stage 2. The stage & column counts the
number of methods that needed stage 3. It is interesting to note that a significant
number of methods were typed using only connected components, and none of
the 16959 methods required insertion of type casts (stage 3).

7.2 Improving class hierarchy analysis

One of the motivations for producing typed Jimple was for use in compiler
analyzes and optimizations, and our second experiment illustrates one such use.
In this experiment we measured the gains in the precision of the conservative
call graph built using class hierarchy analysis (CHA)[4,7,8]. The basic idea is
that for each virtual call of the form o.f(ay,as,...,a,), one needs to determine
all possible methods f that could be called given the receiver o and a given class
hierarchy. If the call graph is built using untyped Jimple, then type information
provided by a method signature must be used to estimate the type of the receiver
o. This type is correct, but may be too general and thus CHA may be too
conservative about the destination of a virtual (or interface) call. If the call graph
is built using typed Jimple, then each receiver has an inferred type provided by
our algorithm, and this is often a tighter type than the type in the signature.
This improved type information reduces the number of possible destinations for
the call, and provides a better call graph on which further analysis can be made.

source program call-graph edges | call-graph edges |Reduction
language name untyped Jimple (#)|typed Jimple (#) (%)
java: jack 10583 10228 3
java: javac 26320 23625 10
java: jimple 51350 33464 35
ada: rudstone 8151 7806 4
eiffel: illness 3966 3778)

ml: nucleic 5009 4820 4

Table 2. Call graph reduction

Table 2 shows the number of call-graph edges for both untyped and typed
Jimple, and the percent reduction due to using typed Jimple. Again we present
a selection of benchmarks from a variety of compilers. Note that the very object-
oriented benchmarks like javac (10%) and jimple (35%) show significant re-
ductions if the static type of the receiver is known. This means that subsequent
analyses, including run-time type analysis, will start with a significantly better
approximation of the call graph. The other benchmarks show a reduction in the
3% to 5% range, which is not as significant. This is mostly due to the fact that

these benchmarks have a much simpler call graph to begin with, and so there is
not much room for improvement.

These results serve to illustrate one benefit of typed Jimple. In fact the types
are useful for a wide variety of other analyses including: (1) finding when an
invokeinterface can be replaced by an invokevirtual call (i.e. when the inferred
type of the receiver is a class, but the instruction is an invokeinterface), (2)
deciding when a method can be safely inlined without violating access rules,
(3) giving types to variables in decompiled code, and (4) as a basis for grouping
variables by type (i.e. a coarse grain run-time type analysis or side-effect analysis
can group variables by declared type).

8 Related Work

Related work has been done in the fields of type inference, typed assembly lan-
guages, and decompilation.

This work is a refinement of a preliminary report by Gagnon and Hendren[9].
In our preliminary work we proposed an exponential algorithm to solve difficult
cases, whereas in this work we avoid the exponential case by applying program
transformations, and we introduce the 3-stage approach. Further, this paper
addresses the problem of assigning different integer types.

In [12], Knoblock and Rehof present a superficially similar algorithm to type
Java bytecode. Their approach is different on many aspects. Their algorithm
only works with programs in SSA form. It consists of adding new types and
changing the interface hierarchy so that every two interfaces have a LUB and a
SUP in the resulting type lattice. Changing the type hierarchy has unfortunate
consequences: decompiled programs expose a type hierarchy that differs from the
original program, the globality of such a change makes this algorithm useless in
a dynamic code optimizers like HotSpot[22]. Our algorithm, on the other hand,
works with any 3-address code representation and has no global side effects. It
is thus suitable for use in a dynamic enviroment.

Type inference is a well known problem. There has been considerable work on
type inference for modern object-oriented languages. Palsberg and Schwartzbach
introduced the basic type inference algorithm for Object-Oriented languages [17].
Subsequent papers on the subject extend and improve this initial algorithm [18,
1,2]. These algorithms infer dynamic types, i.e. they describe the set of possible
types that can occur at runtime. Further, most techniques need to consider the
whole program.

As we emphasized in the introduction, our type problem is different in that
we infer static types. Further, we have a very particular property of having some
type information from the bytecode, including the types of methods. This means
that our type inference can be intra-procedural, and just consider one method
body at a time.

Work has been done by Morrisett et al.[16] on stack-based typed assembly
language. This work differs in that their typed assembly language is directly
produced from a higher level language. Their work emphasizes the importance
of having type information to perform aggressive optimizations. We agree that

types are important for optimization, and this is one good reason we need our
type inference.

Our technique is related to the type inference performed by Java decom-
pilers[15,11,27,3] and other Java compilers that convert from bytecode to C,
or other intermediate representations. Proebsting and Watterson have written
a paper[19] on decompilation in Java. Their paper is mainly focused on recon-
struction high-level control statements from primitive goto branches. In their
text, they wrongfully dismiss the type inference problem as being solvable by
well known techniques similar to the Java verifier’s algorithm. As we have shown
in this paper, the problem is NP-Hard in general, and some bytecode programs
require program transformations in order to be typeable statically.

9 Conclusion

In this paper we presented a static type inference algorithm for typing Java
bytecode. We based our methods on a 3-address representation of Java bytecode
called Jimple. In effect, we perform the translation of untyped 3-address code to
typed 3-address code, where all local variables have been assigned a static type.

We have presented a constraint system that can be used to represent the
type inference problem. Using this representation, we developed a simple, fast
and effective multi-stage algorithm that was shown to handle all methods in a
set of programs (and libraries) produced from five different source languages. We
emphasized the difference between well behaved bytecode as defined by the Java
verifier, and well typed bytecode, as required by a static typing algorithm. Our
experimental results show that this efficient analysis can significantly improve
the results of further analyzes like Class Hierarchy Analysis.

Acknowledgments

We thank Raja Vallée-Rai and other Sable research group members for their
work on developing Jimple and the Soot framework.

References

1. Ole Agesen. Constraint-based type inference and parametric polymorphism. In
Baudouin Le Charlier, editor, SAS’94 Proceedings of the First International
Static Analysis Symposium, volume 864 of Lecture Notes in Computer Science,
pages 78 100. Springer, September 1994.

2. Ole Agesen. The Cartesian product algorithm: Simple and precise type inference
of parametric polymorphism. In Walter G. Olthoff, editor, ECOOP’95 Object-
Oriented Programming, 9th European Conference, volume 952 of Lecture Notes in
Computer Science, pages 2-26, Aarhus, Denmark, August 1995. Springer.

3. Ahpah Software Inc. http://zeus.he.net/ pah/products.html.

4. David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function
calls. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, volume 31 of ACM SIGPLAN Notices, pages 324
341, New York, October 1996. ACM Press.

5. Per Bothner. Kawa - compiling dynamic languages to the Java VM, 1998.

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.
21.
. Sun Microsystems Inc. http://java.sun.com/products/hotspot /.
23.

24.

25.

26.

27.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press; McGraw-Hill Book, Cambridge New York, 1990.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Walter G. Olthoff, editor,
ECOOP’95—Object-Oriented Programming, 9th European Conference, volume 952
of Lecture Notes in Computer Science, pages 77-101, Aarhus, Denmark, August
1995. Springer.

Mary F. Fernandez. Simple and effective link-time optimization of Modula-3 pro-
grams. In Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI), pages 103 115, La Jolla, Califor-
nia, June 1995.

Etienne M. Gagnon and Laurie J. Hendren. Intra-procedural inference of static
types for java bytecode. Technical Report Sable 1998-5, McGill University, Mon-
treal, Canada, October 1998. http://www.sable.mcgill.ca/publications/.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The
Java Series. Addison-Wesley, 1997.

Innovative Software. http://world.isg.de.

T. Knoblock and J. Rehof. Type elaboration and subtype completion for Java
bytecode. In Proceedings 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages., pages 228 242, January 2000.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The
Java Series. Addison-Wesley, Reading, MA, USA, Jannuary 1997.

MLJ. http://research.persimmon.co.uk/mlj/.

Mocha. http://www.brouhaha.com/ eric/computers/mocha.html.

G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed assembly
language. Lecture Notes in Computer Science, 1473:28-52, 1998.

Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Inference. In
Proceedings of the OOPSLA ’91 Conference on Object-oriented Programming Sys-
tems, Languages and Applications, pages 146 161, November 1991. Published as
ACM SIGPLAN Notices, volume 26, number 11.

J. Plevyak and A. A. Chien. Precise concrete type inference for object-oriented
languages. ACM SIGPLAN Notices, 29(10):324 324, October 1994.

Todd A. Proebsting and Scott A. Watterson. Krakatoa: Decompilation in Java
(does bytecode reveal source?). In USENIX, editor, The Third USENIX Confer-
ence on Object-Oriented Technologies and Systems (COOTS), June 16-19, 1997.
Portland, Oregon, pages 185-197, Berkeley, CA, USA, June 1997. USENIX.
Small Eiffel. http://SmallEiffel.loria.fr/.

Soot. http://www.sable.mcgill.ca/soot/.

Tucker Taft. Programming the Internet in Ada 95. In Alfred Strohmeier, edi-
tor, Reliable software technologies, Ada-Europe '96: 1996 Ada-Europe International
Conference on Reliable Software Technologies, Montreuz, Switzerland, June 10 14,
1996: proceedings, volume 1088, pages 1 16, 1996.

Jerzy Tiuryn. Subtype inequalities. In Proceedings, Seventh Annual IEEE Sympo-
stum on Logic in Computer Science, pages 308-315, Santa Cruz, California, June
1992. IEEE Computer Society Press.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot - a Java bytecode optimization framework. In Proceedings
of CASCON 99, 1999.

Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pom-
inville, and Vijay Sundaresan. Optimizing Java Bytecode using the Soot frame-
work: It is feasible? In David Watt, editor, CC2000 International Conference on
Compiler Construction, pages 18 34, Berlin, Germany, March 2000.

WingSoft Corporation. http://www.wingsoft.com/wingdis.shtml.

