
EÆ
ient Inferen
e of Stati
 Types for JavaByte
ode?Etienne M. Gagnon, Laurie J. Hendren and Guillaume Mar
eauSable Resear
h Group, S
hool of Computer S
ien
eM
Gill University, Montreal, Canada[gagnon,hendren,gmar
eau℄�sable.m
gill.
aAbstra
t. In this paper, we present an eÆ
ient and pra
ti
al algorithmfor inferring stati
 types for lo
al variables in a 3-address, sta
kless, rep-resentation of Java byte
ode.By de
oupling the type inferen
e problem from the low level byte
oderepresentation, and abstra
ting it into a
onstraint system, we show thatthere exists veri�able byte
ode that
annot be stati
ally typed. Further,we show that, without transforming the program, the stati
 typing prob-lem is NP-hard. In order to get a pra
ti
al approa
h we have developedan algorithm that works eÆ
iently for the usual
ases and then applieseÆ
ient program transformations to simplify the hard
ases.We have implemented this algorithm in the Soot framework. Our ex-perimental results show that all of the 17,000 methods used in our testswere su

essfully typed, 99.8% of those required only the �rst stage, 0.2%required the se
ond stage, and no methods required the third stage.1 Introdu
tionJava byte
ode is rapidly be
oming an important intermediate representation.This is predominately be
ause Java byte
ode interpreters and JIT-
ompilers arebe
oming more
ommon, and su
h interpreters =
ompilers are now a standardpart of popular web browsers. Thus, Java byte
ode (hen
eforth referred to assimply byte
ode) has be
ome a target representation for a wide variety of
om-pilers, in
luding
ompilers for Ada [23℄, ML [14℄, S
heme [5℄, and Ei�el [20℄.Byte
ode has many interesting properties, in
luding some guarantees aboutveri�able byte
ode that ensure that veri�ed byte
ode programs are well-behaved.For example, veri�able byte
ode guarantees that ea
h method invo
ation has the
orre
t number and type of arguments on the Java expression sta
k. Veri�
ationis done partly stati
ally via a
ow analysis of the byte
ode, and partly via
he
ksthat are exe
uted at runtime. As part of the stati
 veri�
ation, a
ow analysisis used to estimate the type of ea
h lo
al variable and ea
h lo
ation on theexpression sta
k, for ea
h program point. However, as we will show in se
tion 3this is not the same typing problem as the one addressed in this paper.Although byte
ode has many good features, it is not an ideal representationfor program analysis = optimization or program understanding. For analysis =? This work has been supported in part by FCAR and NSERC.

optimization, the expression sta
k
ompli
ates both the analyses and subsequenttransformations. In addition, the sta
k-based representation does not map ni
elyto real register-based ar
hite
tures. For these sorts of optimizing
ompiler appli-
ations a more traditional three-address
ode is preferable, and is used in manyoptimizing Java
ompilers. For program understanding, the byte
ode is too low-level, and one would like to present a higher-level view to the programmer. Oneexample of a high-level representation is de
ompiling byte
ode ba
k to Java.Note that to be generally useful su
h de
ompilers should work for any veri�ablebyte
ode, not just byte
ode produ
ed by Java
ompilers.1When byte
ode is translated to a three-address representation or high-levelrepresentation it is important that all variables should be given a stati
 typethat is
orre
t for all uses of that variable. For a de
ompiler, ea
h variable needsto have a de
lared type that is type
orre
t for all uses of that variable. Forthree-address representations, the type of a variable
an be used to improveanalysis and optimization. We have found having types for lo
al variables to beindispensable in our
ompiler, and one example use, improving the quality ofthe
all graph, is presented in se
tion 7.2.In this paper, we address the problem of inferring a stati
 type for ea
h vari-able in a three-address representation of byte
ode
alled Jimple[26, 25℄. Jimple ispart of the Soot
ompiler framework that is used for both
ompiler optimizationsand de
ompilation. It is a fairly standard representation, so our results shouldapply to other similar representations.In order to give a feel for the problem,
onsider the simple example in Figure1. Figure 1(a) gives an untyped method in a Jimple-like intermediate represen-tation. Note that there is some type information whi
h
omes dire
tly from thebyte
ode. For example, the signature of method f is spe
i�ed in the byte
ode, sowe know a �xed type for the return value, and we know some type informationfrom new instru
tions. However, lo
al variables, su
h as a, b,
 and s do nothave an expli
it type in the byte
ode. We
an determine
orre
t types for thesevariables by
olle
ting type
onstraints. Figure 1(b) shows the
lass hierar
hy,and �gure 1(
) shows the
onstraints imposed by ea
h statement. We formulatethe typing problem as a graph problem. Figure 1(d) shows a graph that repre-sents both the
lass hierar
hy and the type
onstraints on the variables. Typesin the hierar
hy are shown as double
ir
les whi
h we
all hard nodes, while typevariables are shown as single
ir
les whi
h we
all soft nodes. A solution to thetyping problem is found by
oales
ing nodes together. If nodes
an be
oales
edso that ea
h
oales
ed node
ontains exa
tly one hard node, then we have founda solution to the typing problem. Figure 1(e) shows one possible
oales
ing ofthe graph, and this
orresponds to the typed method in Figure 1(e). Note thatthere may be more than one
orre
t solution. For this example another
orre
tsolution would be to assign a, b and
 the type Obje
t. In general, we prefer1 Also note that by
ombining a
ompiler that translates from a high-level language Xto byte
ode with a de
ompiler from byte
ode to Java, one has a tool for translatingfrom X to Java.

a typing that gives more spe
i�
 types sin
e this will help more in subsequentanalyses.publi
 java.lang.String f(){ <unknown> a;<unknown> b;<unknown>
;<unknown> s;s1:
 = new C();s2: b = new B();if (...)s3: a =
;elses4: a = b;s5: s = a.toString();s6: return(s);}

lass A extends Obje
t{ ... }
lass B extends A{ publi
 String toString() ...;...}
lass C extends A{ publi
 String toString() ...;...}(a) untyped method (b)
lass hierar
hys1: T (
) Cs2: T (b) Bs3: T (a) T (
)s4: T (a) T (b)s5: Obje
t T (a)T (s) Strings6: String T (s)

Object

T(a)

A

T(b)

C

StringT(s)

T(c)

B(
)
onstraints (d) graph problem
Object String

T(s)

A
T(a)

B
T(b)

C
T(c)

publi
 java.lang.String f(){ A a;B b;C
;java.lang.String s;s1:
 = new C();s2: b = new B();if (...)s3: a =
;elses4: a = b;s5: s = a.toString();s6: return(s);}(e) solution (f) typed methodFig. 1. Simple example of stati
 typingThe type inferen
e problem would seem easy at �rst glan
e, and for oursimple example it would be quite easy to dedu
e types during the byte
odeto Jimple translation. However, there are three points that make the generaltyping problem diÆ
ult: (1) the program point spe
i�
 nature of the byte
odeveri�
ation, (2) multiple inheritan
e due to interfa
es, and (3) the
orre
t typing

of arrays. In fa
t, we will show that the type inferen
e problem is NP-hard.However, we propose an eÆ
ient, polynomial time, multi-stage algorithm thatbypasses this
omplexity by performing program transformations that simplifythe type inferen
e problem, without a�e
ting program semanti
s, when a diÆ
ult
ase is en
ountered. Our algorithm performs two kinds of transformations: (1)variable splitting at obje
t
reation sites, and (2) insertion of type
asts thatare guaranteed to su

eed at run-time. Our experimental results show that all ofthe 16,492 methods extra
ted from 2,787 JDK 1.1 and SPEC jvm98
lasses weretyped by our algorithm, without inserting any type
asts. Variable splitting wasonly applied in 29 methods.It is important to
ontrast this work, where we �nd a stati
 type
onsistentwith all uses of a variable, with other type inferen
e analyses where the mainfo
us is to stati
ally infer the set of dynami
 (or
on
rete) types that a variable
ould hold, at a parti
ular program point at run-time [17, 18, 1, 2℄. We will
allsu
h algorithms run-time type analysis to distinguish them from our stati
-typeanalysis. For our example program in Figure 1(a), run-time type analysis wouldinfer that the variable a at program point s1
ould have type B, whereas atprogram point s5 a
ould have types fB, Cg. In our typing problem we need to�nd one stati
 type that is
onsistent with all uses of a. As we show in se
tion7.2, our stati
 type is a
tually a reasonably good starting point for other analyses,in
luding a run-time type analysis we have built on top of typed Jimple.Our paper is stru
tured as follows. In se
tion 2 we present our three-addressrepresentation. In se
tion 3 we show some examples to demonstrate why thistyping problem is diÆ
ult. In se
tion 4, we de�ne the general stati
 type inferen
eproblem, and give the main algorithm for programs without arrays. In se
tion 5we present extensions to our algorithm to handle arrays. In se
tion 6 we showhow to infer integer types. Se
tion 7
ontains our experimental results. Finally,we review related work in se
tion 8 and present our
on
lusions in se
tion 9.2 A 3-Address Representation: JimpleWe assume that the reader is already familiar with Java byte
ode. A
ompletedes
ription of the
lass �le format
an be found in [13℄. Furthermore, we assumethat all analyzed byte
ode would be su

essfully veri�ed by the Java byte
odeveri�er[13℄. It is important to remember that the veri�ability of the
ode impliesthat it is well behaved, but it does not imply that it is well typed.While the byte
ode format seems of great interest for implementing an inter-preter, it is not well suited for reasoning about byte
ode, sin
e many operandsare on the sta
k and thus do not have expli
it names. In order to alleviate thisdiÆ
ulty, many Java optimizing
ompilers
onvert byte
ode to a more traditional3-address-
ode, where all sta
k-based operations are transformed into lo
al vari-able based operations. This is made possible by the
onditions met by veri�edbyte
ode, most notably: the
onstant sta
k depth at ea
h program point, andthe expli
it maximum depth of sta
k and number of lo
al variables used in thebody of a method.

The byte
ode to 3-address-
ode transformation is done by
omputing thesta
k depth at ea
h program point, introdu
ing a new lo
al variable for ea
hsta
k depth, and then rewriting the instru
tion using the new lo
al variables2.For example:iload_1 (sta
k depth before 0 after 1)iload_2 (sta
k depth before 1 after 2)iadd (sta
k depth before 2 after 1)istore_1 (sta
k depth before 1 after 0)is transformed into:sta
k_1 = lo
al_1sta
k_2 = lo
al_2sta
k_1 = sta
k_1 iadd sta
k_2lo
al_1 = sta
k_1In produ
ing the 3-address-
ode it is simple to retain all type information
ontained in byte
ode instru
tions. So, for instan
e, every virtual method
on-tains the
omplete signature of the
alled method, as well as the name of the
lass de
laring the method. However, as there are no expli
it types for lo
als orsta
k lo
ations, it is more diÆ
ult to �nd types for these variables. In our
om-piler we produ
e a 3-address representation
alled Jimple, that is �rst
reatedin an untyped version, where the types of lo
al variables are unknown. Everyveri�able byte
ode program has an equivalent untyped Jimple representation.In �nal preparation, prior to applying the typing algorithms outlined in thispaper, a data
ow analysis is applied on the Jimple representation,
omputingde�nition-use and use-de�nition (du-ud)
hains. Then, all lo
al variables are splitinto multiple variables, one for ea
h web of du-ud
hains. Our example would betransformed to:sta
k_1_0 = lo
al_1_0sta
k_2_0 = lo
al_2_0sta
k_1_1 = sta
k_1_0 iadd sta
k_2_0lo
al_1_1 = sta
k_1_1Note that sta
k 1 has been split into sta
k 1 0 and sta
k 1 1, and similarlylo
al 1 has been split into lo
al 1 0 and lo
al 1 1. This splitting is quiteimportant, be
ause a single lo
al or sta
k lo
ation in the byte
ode
an refer todi�erent types at di�erent program points. This form of Jimple looks overly long,with many spurious
opy statements. In our framework the
ode is
leaned upusing standard te
hniques for
opy propagation and elimination.3 Challenges of TypingThe stati
 typing problem looks quite simple at �rst, but there are subtle pointsthat make the problem diÆ
ult. In this se
tion we illustrate some diÆ
ulties by2 In reality, the sta
k analysis, the introdu
tion of new lo
al variables, and the trans-formation are not as straight-forward as it looks here. This is due to the presen
e ofsubroutines (the jsr byte
ode instru
tion) and double-word values (long, double). A
omplete des
ription of the byte
ode to Jimple transformation
an be found in [26,25℄.

showing di�eren
es between the typing problem for a 3-address representationwith lo
al variables, and the typing approximation done by the Java veri�er.Another subtle point is how to deal with arrays, and this is dealt with in Se
tion5.3.1 De
lared variable types versus types at program pointsPart of the Java veri�er is a
ow analysis that estimates, at ea
h program point,the type of values stored in ea
h lo
al variable and ea
h sta
k lo
ation. Thistype information is used to ensure that ea
h byte
ode instru
tion is operatingon data of the
orre
t type. In our typing problem we wish to give a type toea
h variable that is
orre
t for all uses and de�nitions of that variable (i.e. thesame type must be
orre
t at multiple program points).Consider Figure 2 where two methods hard and harder illustrate the point.In method hard, the Java veri�er would infer that x has type CA at programpoint s1 and type CB at program point s2. For program point s3 the veri�ermerges the types from ea
h bran
h by taking their
losest
ommon super
lass,whi
h is Obje
t. Thus, for three di�erent program points, the veri�er has threedi�erent types. However, for our problem, we want to assign one type to lo
alvariable x. In this
ase, it is possible to satisfy all
onstraints and assign typeObje
t to variable x. However, to �nd
onsistent types the whole method mustbe analyzed, the types
annot be
omputed \on-the-
y" as is done in the veri�er.Now
onsider method harder in Figure 2. This is similar to the previous
ase, but now it is not possible to give a single stati
 type to variable y. Atprogram point s1 y must have type CA and at program point s2 y must havetype CB. In order to stati
ally type this program, it must be transformed toin
lude extra
opy statements (as one would get by translating from an SSAform) or by introdu
ing type
asts. Note that one would not see the harder
asein byte
ode produ
ed from an ordinary Java
ompiler, however we have seen
ases like this in byte
ode produ
ed by
ompilers for other languages.
lass CA extends Obje
t { f(){...} ... }
lass CB extends Obje
t { g(){...} ... }
lass MultiDef extends Obje
t{ void hard(){ <untyped> x;if(...)s1: x = new CA();elses2: x = new CB();s3: x.toString();}
void harder(){ <untyped> y;if(...)s1: { y = new CA(); y.f(); }elses2: { y = new CB(); y.g(); }s3: y.toString();}}Fig. 2. Multiple de�nition and use points3.2 Problems due to interfa
esInterfa
es in Java give a restri
ted form of multiple inheritan
e, and this leads toproblems in �nding a stati
 typing in some
ases. Consider the example in Figure

3(a), where the
lass hierar
hy is de�ned as in Figure 3(b). At program points1 aa has interfa
e type IC, and at program point s2 aa has interfa
e type ID.The diÆ
ulty
omes at the merge point be
ause there is no single superinterfa
efor IC and ID, rather there are two unrelated
hoi
es, IA and IB. The Javaveri�er will
hoose the type Obje
t, and then
he
k the invokeinterfa
e
alls atruntime. These runtime
he
ks will pass, and so from the veri�
ation point ofview, this program is well-behaved.
lass Interfa
eDemo{ IC getC() { return new CC(); }ID getD() { return new CD(); }void hardest(){ <untyped> aa;if(...)s1: aa = getC();elses2: aa = getD();s3: aa.f(); // invokeinterfa
e IA.fs4: aa.g(); // invokeinterfa
e IB.g}}

lass CC implements IC{ void f() {}void g() {}}
lass CD implements ID{ void f() {}void g() {}}Interfa
e IA { void f(); }Interfa
e IB { void g(); }Interfa
e IC extends IA, IB {}Interfa
e ID extends IA, IB {}(a) untyped program (b) hierar
hyFig. 3. Typing interfa
esNow
onsider our problem of �nding one stati
 type for aa. In this
ase thereis no solution, even though the byte
ode is veri�able. If we
hose type IA, thenthe type at statement s4 is wrong, if we
hose type IB, the type at statements3 is wrong, if we
hose type IC, the type at statement s2 is wrong, and if we
hose type ID, the type at statement s1 is wrong. In fa
t, one
an not writea Java program like this Jimple program and give a
orre
t stati
 type to aa.However, remember that our Jimple
ode
omes from byte
ode produ
ed fromany
ompiler or byte
ode optimizer, and so this situation may o

ur in veri�ablebyte
ode.One might be tempted to think that adding extra
opies of the variable, likein SSA form would solve this problem as well. However, if we rewrite 3(a) inSSA form, we get:if(...)s1: aa1 = getC();elses2: aa2 = getD();s3a: aa3 = phi(aa1, aa2);s3: aa3.f(); // invokeinterfa
e IA.fs4: aa3.g(); // invokeinterfa
e IB.gClearly this does not solve the problem, there is still no type solution foraa3.

4 Three-Stage Algorithm4.1 Algorithm overviewThe goal of the typing algorithm is to �nd a stati
 type assignment for all lo
alvariables su
h that all type restri
tions imposed by Jimple instru
tions on theirarguments are met. In order to solve this problem, we abstra
t it into a
onstraintsystem. For
onvenien
e of implementation (and des
ription), we represent this
onstraint system as a dire
ted-graph.We initially restri
t our type inferen
e problem to programs that do notin
lude arrays, nor array operations. This allows us to illustrate the
onstraintsystem.Finding whether there exists or not a stati
-type assignment that solves this
onstraint system is similar to solving the UNIFORM-FLAT-SSI problem, whi
hTiuryn and Pratt have shown to be NP-Complete[24℄. Thus, the overall typingproblem is NP-Hard.Given this
omplexity result, we have
hosen to design an eÆ
ient algorithmthat may perform program transformations to make the typing problem simpler.We �rst give an overview of our algorithm, and then des
ribe ea
h stage in moredetail.An eÆ
ient 3-stage algorithm The algorithm
onsists of three stages. The�rst stage
onstru
ts a dire
ted-graph of program
onstraints. Then, it mergesthe
onne
ted
omponents of the graph, and removes transitive
onstraints. Fi-nally, it merges single
onstraints. At this point, it su

eeds if all variables havevalid types, or it fails if a variable has no type, or if a type error was dete
tedin the pro
ess.If the �rst stage fails to deliver a solution, the se
ond stage applies a variablesplitting transformation, and then reruns stage 1 on the transformed program.We have only found one situation where variable splitting is required, and thatis for variables whi
h are assigned new obje
ts (i.e. for statements of the form x= new A()).If stage 2 fails, then stage 3 pro
eeds as follows. A new
onstraints graph isbuilt, where this graph only en
odes variable de�nition
onstraints. In this graph,variable use
onstraints are not re
orded, and interfa
e inheritan
e is ignored.In other words, ea
h interfa
e has a single parent java.lang.Obje
t. Then, the
onstraints system is solved using the least
ommon an
estor LCA of
lasses andinterfa
es (whi
h is now always unique). On
e all variables are assigned a type,use
onstraints are
he
ked on every original Jimple statement, and type
astsare added as needed to satisfy the
onstraints. The veri�ability of the originalprogram guarantees that these inserted
asts will always su

eed at run-time.Handling arrays This se
tion des
ribes the basi

onstraint system for pro-grams without arrays. We extend the
onstraint system, with extra notation forarray
onstraints, in Se
tion 5. We then show how to transform an array probleminto a restri
ted problem (with no array
onstraints), and how to propagate thesolution of the restri
ted problem ba
k to the original array problem.

Implementing the algorithm We have implemented the algorithm, but in thispaper we do not dis
uss implementation details. It is quite straightforward toa
hieve a simple implementation using eÆ
ient algorithms for strongly-
onne
ted
omponents and fast union on disjoint sets [6℄.4.2 Stage 1Constraint system In this se
tion, we show how to transform the type in-feren
e problem into a
onstraint system represented as a dire
ted graph. Intu-itively, the graph represents the
onstraints imposed on lo
al variables by Jimpleinstru
tions in the body of a method. In this initial version, we assume that theanalyzed Jimple
ode
ontains no arrays and no array operations. Further, weinfer primitive types as de�ned for Java byte
ode [13℄. In parti
ular, boolean,byte, short, and
har are all treated as int. Se
tion 6 presents an algorithm that
an be used to infer these di�erent integer types.The
onstraint graph is a dire
ted graph
ontaining the following
omponents:1. hard node: represents an expli
it type;2. soft node: represents a type variable; and3. dire
ted edge: represents a
onstraint between two nodes.A dire
ted edge from node b to node a, represented in the text as a b,means that b should be assignable to a, using the standard assignment
ompati-bility rules of Java [13, 10℄. Simply stated, b should be of the same type as a, ora should be a super
lass (or superinterfa
e) of b.The graph is
onstru
ted via a single pass over the Jimple
ode, adding nodesand edges to the graph, as implied by ea
h Jimple instru
tion. The
olle
tionof
onstraints is best explained by looking at a few representative Jimple state-ments. We will look at the simple assignment statement, the assignment of abinary expression to a lo
al variable, and a virtual method invo
ation. All other
onstru
tions are similar.A simple assignment is an assignment between two lo
al variables [a = b℄. Ifvariable b is assigned to variable a, the
onstraints of assignment
ompatibilityimply that T (a) T (b), where T (a) and T (b) represent the yet unknown re-spe
tive types of a and b. So, in this
ase, we need to add an edge from T (b) toT (a) (if not already present). This is shown in �gure 4.
T(a) T(b)Fig. 4. b assigned to aAn assignment with a more
omplex right-hand-side results in more
on-straints. For example, the statement [a = b + 3℄, generates the following
on-straints: T (a) T (b), T (a) int, and int T (b).Our last and most
ompli
ated
ase is a method invo
ation, where
onstraintsare generated for the re
eiver, the a
tuals, and the variable on the left-hand-side.For example,
onsider [a = b:equals(
)℄, or with the full type signature: a =virtualinvoke b.[boolean java.lang.Obje
t.equals(java.lang.Obje
t)℄ (
). We get the

following
onstraints, ea
h involving a hard node: (1) java:lang:Obje
t T (b),from the de
laring
lass of equals; and (2) java:lang:Obje
t T (
), from theargument type in the method signature; and (3) T (a) int, be
ause the returntype of equals is boolean (we have a single integer type).As shown in �gure 1, our type inferen
e problem now
onsists of mergingsoft nodes with hard nodes, su
h that all assignment
ompatibility
onstraints,represented by edges, are satis�ed. Merging a soft node with a hard node isequivalent to inferring a type for a lo
al variable. If no su
h solution exists (orit is too
ostly to �nd), or if a node needs more than one asso
iated type (e.g.a soft node is merged with two or more hard nodes), then the �rst stage of theinferen
e algorithm fails.Conne
ted
omponents Our �rst transformation on the
onstraint graph
onsists of �nding its
onne
ted
omponents (or
y
les). Every time a
onne
ted
omponent is found, we merge together all nodes of
onne
ted
omponent, asillustrated in �gure 5.
AT(a) T(b)

T(a)
A

 T(b)Fig. 5. Merging
onne
ted
omponentsThis is justi�ed be
ause every node in a
onne
ted
omponent is indire
tlyassignable to and from any other node in the same
onne
ted
omponent. Itfollows that all these nodes must represent the same type, in any solution to thetype inferen
e problem.We
an divide
onne
ted
omponents into three kinds. First, there are
on-ne
ted
omponents without hard nodes. In this
ase, nodes are simply merged,and all
onstraints of all nodes are propagated to the representative node3. Se
-ond, some
onne
ted
omponents have a single hard node. In this
ase, all softnodes are merged with the hard node, then all
onstraints are veri�ed. If any
onstraint
an't be satis�ed, the �rst stage of the algorithm fails. Third, it maybe that a
onne
ted
omponent has two or more hard nodes. When this o

urs,the �rst stage fails.In this step, we also take advantage of the veri�er restri
tions on primitivetypes to merge respe
tively all values in a transitive relation with any of theprimitive types: int, long,
oat, and double. Figure 6 shows an example of prim-itive type merge. It is enough that a node be indire
tly assignable to or froma primitive type hard node to be merged with it. This is be
ause there is noautomati

onversion between primitive types.Transitive
onstraints On
e the
onne
ted
omponents are removed fromthe
onstraint graph, we are left with a dire
ted-a
y
li
-graph (DAG). Our3 Constraints from the representative node to itself are eliminated.

T(a) T(b)
 T(b)

intT(a)intFig. 6. Merging primitive typesnext transformation
onsists of removing redundant
onstraints (edges) fromthis DAG by eliminating any transitive
onstraints in the graph. A transitive
onstraint from a node y to a node x, is a
onstraint x y su
h that thereexists another
onstraint p y where p is not x and there is a path from p tox in the dire
ted graph.Transitive
onstraints are removed regardless of the kind of nodes involved(soft, hard), with the ex
eption of hard-node to hard-node
onstraints4. This isshown in �gure 7.
T(a) T(b) B T(b)T(a) BFig. 7. Removing transitive
onstraintsSingle Constraints Nodes that have only one parent or one
hild
onstraint
an be simpli�ed. A node x is said to have a single parent
onstraint to a nodey, if y x and for any p 6= y there is no
onstraint p x. A node x is said tohave a single
hild
onstraint to a node y, if x y and for any p 6= y there isno
onstraint x p.Our next transformation
onsists of merging soft nodes that have single
on-straints to other nodes. To improve the a

ura
y of our results, we do this usingthe following priority s
heme:1. Merge single
hild
onstraints: Merge x with y when x is a soft node with asingle
hild
onstraint to any other node y. (Merging with
hildren resultsin lower (thus more pre
ise) types in the type hierar
hy).2. Merge with least
ommon an
estor: This is a spe
ial
ase. When x is asoft node that only has
hild
onstraints to hard nodes representing
lasstypes, we
an safely repla
e these
onstraints by a single
hild
onstraintto the hard node representing the least
ommon an
estor of the
lass typesinvolved. Then we
an merge the resulting single
hild
onstraint.3. Merge single soft parent
onstraints: Merge x with y when x is a soft nodewith a single parent
onstraint to another soft node y.4. Merge remaining single parent
onstraints: Merge x with y when x is a softnode with a single parent
onstraint to another node y.Examples of this are shown in Figures 1 and 8.4 Hard-node to hard-node
onstraints represent the type hierar
hy.

When a soft node has no expli
it parent, we
an safely assume that it has thehard node representing java.lang.Obje
t as parent. We also introdu
e (as doesthe veri�er) a null type, whi
h is a des
endant of all referen
e types. When asoft node has no
hild, whi
h means that it was never de�ned, we assume thatit has null as a
hild.Stage 1 su

eeds if all soft nodes are merged with hard nodes at the end ofthis step. It fails when merging a soft node with a hard node exposes an invalid
onstraint, or when there remains a soft node at the end of the step.
T(a) T(b) B T(a)

B
 T(b)

B T(a)
 T(b)Fig. 8. Merging single
onstraints4.3 Stage 2In some
ases, stage 1 fails to deliver a solution. In our experiments, this onlyhappened in
ases similar to the problem exposed in method harder of Figure2. More pre
isely, the sour
e of the problem is that Java and other languages usea simple new expression to both
reate and initialize a new obje
t, whereas inbyte
ode, the same operation is done in two separate steps: the obje
t is
reatedusing the new byte
ode, but it is then initialized by invoking the <init>methodon the newly
reated obje
t. This is shown in Figure 9, where the method
alledjava shows the method as it would appear in Java, and the method
alledthree address shows the extra <init> instru
tions that are exposed at thebyte
ode level.
lass CAextends Obje
t{ ... }
lass CBextends Obje
t{ ... }
lass MultiDefextends Obje
t{ void java(){ Obje
t y;if(...)y = new CA();elsey = new CB();y.toString();}}

void three_address(){ <untyped> y;if(...){ y = new CA();y.[CA.<init>()℄();}else{ y = new CB();y.[CB.<init>()℄();}y.toString();}
void fixed_three_address(){ <untyped> y, y1, y2;if(...){ y1 = new CA();y = y1;y1.[CA.<init>℄();}else{ y2 = new CB();y = y2;y2.[CB.<init>℄();}y.toString();}Fig. 9. Obje
t
reation in Java versus 3-address
odeIn stage 2, we solve this problem by introdu
ing
opy statements at every ob-je
t
reation site. This is shown in Figure 9 in the method fixed three address.After inserting the extra
opy statements, we simply reapply stage 1.

Experimental results show us that this very simple transformation is verye�e
tive at solving all type inferen
e diÆ
ulties found in
ode generated fromnormal
ompilers.4.4 Stage 3It is possible that the previous stages fail and this would happen with the methodhardest in Figure 3. However,
urrent
ompilers and programs seem not to ex-pose su
h diÆ
ult
ases. In the future, optimizing
ompilers
ould get moreaggressive, and programmers might start designing more elaborate interfa
e hi-erar
hies. In order to provide a
omplete, yet eÆ
ient type inferen
e algorithm,we designed this third stage.First, we note that, due to the good behavior guarantees provided by thebyte
ode veri�er, a very
rude solution to all type inferen
e problems wouldbe to separate lo
al variables into sets of: referen
e, double,
oat, long andint variables. Then, assign the type java.lang.Obje
t to all referen
e variables.Finally, introdu
e type
asts at every lo
ation where use
onstraints would beviolated. All the introdu
ed
asts are guaranteed to su

eed at runtime.But this solution would be somewhat useless in the
ontext of an three-address
ode optimizer, as type information would be too general, and it wouldnot o�er mu
h information in de
ompiled Java programs.Our solution also depends on the good behavior of veri�able byte
ode, buto�ers a mu
h improved type a

ura
y without sa
ri�
ing simpli
ity. We simplyrebuild the
onstraint graph without use
onstraints5, and we ignore the interfa
ehierar
hy by assuming that all interfa
es have a single parent java.lang.Obje
t.In this hierar
hy, every two types have an LCA.As in stage 1, we merge strongly
onne
ted
omponents. But, in this de�-nition
onstraints graph, all hard-node to soft-node
onstraints are parent
on-straints. So, no strongly
onne
ted
omponent
ontains a hard node. Thus, thisstep will not dete
t any type error.Then, as in stage 1, we eliminate transitive
onstraints and merge single
on-straints. When merging single
onstraints, we repla
e multiple
hild
onstraintsfrom a soft node to hard nodes by a single
hild
onstraint from the soft nodeto the node representing the LCA type of
lasses and interfa
es involved. Unlikestage 1, this is guaranteed to deliver a solution.The type assignment of this solution may violate some use
onstraints. So,in a last step, we
he
k every three-address statement for
onstraint violations,and introdu
e type
asts as needed.Figure 10 shows this solution applied to the examples in Figure 2 (harder),and Figure 3 (hardest).5 A de�nition
onstraint is a
onstraint imposed by a de�nition e.g. x = new A is ade�nition of x, and so it introdu
es a
onstraint that would be in
luded in this graph.A use
onstraint in imposed by a use of a variable e.g. return(x) uses x and so any
onstraints imposed by this use would not be in
luded in the graph.

void harder(){ Obje
t y;if(...)s1: { y = new CA();((CA) y).f(); }elses2: { y = new CB();((CB) y).g(); }s3: y.toString();}
void hardest(){ Obje
t aa;if(...)s1: aa = getC();elses2: aa = getD();s3: ((IA) aa).f(); // invokeinterfa
e IA.fs4: ((IB) aa).g(); // invokeinterfa
e IB.g}(a) Figure 2 (harder) solution (b) Figure 3 (hardest) solutionFig. 10. Adding
asts5 Array ConstraintsTo infer types in programs using arrays, we introdu
e array
onstraints in the
onstraints graph. An array
onstraint represents the relation between the typeof an array and the type of its elements. We write A 7! B, to indi
ate that B isthe element type of array type A (or more simply, A is an array of B). In graphs,we represent these
onstraints using dashed dire
ted edges from the array typeto the element type.This simple addition allows us to
olle
t
onstraints for all three-addressstatements. For example, the program fragment a[d℄ = b;
 = a; generatesthe following
onstraints: a 7! b; d int; and
 a.In Java byte
ode, (A[℄ B[℄) i� (A B) and (A B[℄) i� (A � fObje
t,Serializable, Cloneableg). We take advantage of this to build an equivalent
on-straints graph without any array
onstraints. Then we solve the new problemusing the algorithm presented in Se
tion 4. Finally, we use this solution to in-fer the type of arrays, reversing our �rst transformation. This transformation isapplied in both stage 1 and stage 3, if needed.We now give a more detailed des
ription of this pro
ess. First, we
omputethe array depth of soft nodes in the
onstraints graph using a work list algorithmand the following rules:{ Every hard node has an array depth equal to the number of dimensions ofthe array type it represents, or 0 if it is not an array type.{ null has array depth1. (null is des
endant of all types, in
luding array typesof all depth6).{ A soft node with one or more
hild
onstraint has an array depth equal tothe smallest array depth of its
hildren.{ A soft node with an array
onstraint has a depth equal to one + the depthof its element node.{ When we verify our solution, a soft node with one or more parent
onstraintsmust have an array depth greater or equal to the greatest array depth of itsparents7. (This rule is not used in stage 3).6 We
ould also use 256, as Java arrays are limited to 255 dimensions.7 If this rule fails, stage 1 fails.

We merge with null all soft nodes with array depth equal to 1. Then, we
omplete the
onstraints graph by adding all missing array
onstraints (and softnodes) so that every node of array depth n greater than 0 (
alled array node)has an array
onstraint to a node of array depth n� 1.The �nal step in the transformation is to
hange all
onstraints between arraysoft nodes and other nodes into
onstraints between non-array nodes using thefollowing rules:{ Change a
onstraint between two nodes of equal depth into a
onstraintbetween their respe
tive element nodes.{ Change a
onstraint between two nodes of di�erent depth into a
onstraintbetween the element type of lowest depth node and java:lang:Cloneable andjava:io:Serializable.This is illustrated in �gure 11.
a = new String[];

a[1] = b[3];
b = a;

T(b)

T(a)

T(b)
1

T(a)
1

0

0

T(a) == String[]

T(b) == String[]

1 0

01

String
0

T(b)
1

T(a)
1

1

String
0

T(a)

T(b)

 String[] String[]
1 1

 String[]

 String[] Fig. 11. Solving array
onstraintsThen we use the algorithm of se
tion 4 to solve the typing problem on thegraph of non-array nodes. Then we use this solution to infer the type of arraynodes. For example, if x 7! y, and y = A, then x = A[℄In order to
orre
tly handle the
ase of primitive array types (boolean[℄:::[℄,short[℄:::[℄,
har[℄:::[℄, byte[℄:::[℄), we merge these hard nodes with all their same-depth neighbors before
onstraints propagation8.6 Integer TypesWhile the algorithm presented in previous se
tions infers the ne
essary types foroptimizing three-address
ode, these types are not suÆ
ient for Java de
ompilers.8 This is ne
essary be
ause the depth 0 for all these types is int.

All boolean, byte, short,
har values are automati
ally operated upon asint values by the byte
ode interpreter. Furthermore, the Java veri�er does not
he
k for
onsistent use of these types.It is thus possible to
onstru
t byte
ode programs with dubious semanti
sas:boolean erroneous(int a) // boolean return value{ return a; // valid byte
ode!}void dubious(){ <unknown> b = erroneous(5);System.out.[void println(int)℄(b); // prints 1 or 5?} We developed an algorithm that infers the basi
 types boolean, byte,short,
har, int for all variables that are assigned an int type by the ini-tial 3-stage algorithm.This algorithm operates in two stages. The �rst stage uses the type hierar
hyin Figure 12(a), and
onsists of:{ Constraints
olle
tion.{ Merging
onne
ted
omponents. (This may fail).{ Merging single relations by aplying the following rules until a �xed point isrea
hed:� Repla
ing all multiple
hild dependen
ies between a single soft node andmultiple hard nodes by a dependen
y on the least
ommon an
estor type.� Repla
ing all multiple parent dependen
ies between a single soft nodeand multiple hard nodes by a dependen
y on the greatest
ommon de-s
endent type.� Merging a soft node with a single parent or single
hild hard node rep-resenting either boolean, byte, short,
har or, int.If this stage fails to deliver a solution (remaining soft node,
on
i
ting parent or
hild
onstraints), then a se
ond stage is performed using the type hierar
hy inFigure 12(b) and the following steps:{ De�nition
onstraints
olle
tion.{ Merging
onne
ted
omponents. (This always su

eeds).{ Merging single relation by aplying the following rules until a �xed point isrea
hed:� Repla
ing all multiple
hild dependen
ies between a single soft node andmultiple hard nodes by a dependen
y on the least
ommon an
estor type.� Merging a soft node with a single
hild hard node.This will always deliver a solution. In the �nal type assignment, [0::127℄ is re-pla
ed by byte, and [0::32767℄ is repla
ed by
har. Finally, use
onstraints areveri�ed and type
asts are added as required.The se
ond stage might introdu
e narrowing type
asts, and thus possibly
hange the semanti
s of the program. However, this would only happen whenprograms have dubious semanti
s to begin with. In our experiments, we havenot dis
overed a
ase where stage 2 was needed.

int

short

byte

char

[0..1]

TOP

boolean

[0..32767]

[0..127]

int

short

byte

char

[0..32767]

[0..127]

boolean(a) stage 1 (b) stage 2Fig. 12. Integer type hierar
hy7 Experimental ResultsThe typing algorithm presented in this paper has been implemented in the Sootframework[21℄. The typing algorithm a

epts untyped Jimple as input, and out-puts typed Jimple. Typed Jimple is used by subsequent analyses in
luding
lasshierar
hy analysis, pointer analysis and a Jimple to Java de
ompiler.In this se
tion we present the results of two set of experiments done usingour implementation. The �rst set of experiments was performed to test therobustness of the typing algorithm as well as to gather empiri
al data about the
omplexity of type
onstraints in programs
ompiled from various languages. Inthe se
ond experiment, the inferred types of Jimple were used to improve ClassHierar
hy Analysis.7.1 Typing Java byte
odeWe have applied our typing algorithm on
lass �les produ
ed by
ompilers of �vedi�erent languages: Java[10℄, Ei�el[20℄, Ada[23℄, S
heme[5℄ and ML[14℄. Table 1shows a sele
tion of our results to show the general trends. The ben
hmarks areas follows: java
 is the Sun's java

ompiler, jdk1.1 is everything in Sun's java
lass library for jdk1.1, kalman is a numeri
 Ada ben
hmark,
ompile to
 isthe SmallEi�el
ompiler (version 0.79), lexgen is a lexer generator used in theStandard ML of New Jersey ben
hmark suite, and boyer is one of the GabrielS
heme ben
hmarks.Language Ben
hmark # methods
onn.
omp. single
ons. stage 2 stage 3java: java
 1179 383 796 3 0java: jdk1.1 5060 2818 2228 14 0ada: kalman 735 463 262 10 0ei�el:
ompile to
 7521 1562 5959 0 0ml: lexgen 209 140 69 0 0s
heme: boyer 2255 820 1433 2 0Table 1. Required steps

The # methods
olumn gives the total number of methods in the ben
hmark.The next two
olumns give the number of methods that
ould be typed usingvarious steps of stage 1. The
onn.
omp.
olumn
ounts the number of methodsthat
ould be
ompletely typed by �nding
onne
ted
omponents, while thesingle
ons.
olumn
ounts the number of methods that needed both
onne
ted
omponents and the removal of single
onstraints. The stage 2
olumn
ountsthe number of methods that required the stage 2. The stage 3
olumn
ounts thenumber of methods that needed stage 3. It is interesting to note that a signi�
antnumber of methods were typed using only
onne
ted
omponents, and none ofthe 16959 methods required insertion of type
asts (stage 3).7.2 Improving
lass hierar
hy analysisOne of the motivations for produ
ing typed Jimple was for use in
ompileranalyzes and optimizations, and our se
ond experiment illustrates one su
h use.In this experiment we measured the gains in the pre
ision of the
onservative
all graph built using
lass hierar
hy analysis (CHA)[4, 7, 8℄. The basi
 idea isthat for ea
h virtual
all of the form o:f(a1; a2; : : : ; an), one needs to determineall possible methods f that
ould be
alled given the re
eiver o and a given
lasshierar
hy. If the
all graph is built using untyped Jimple, then type informationprovided by a method signature must be used to estimate the type of the re
eivero. This type is
orre
t, but may be too general and thus CHA may be too
onservative about the destination of a virtual (or interfa
e)
all. If the
all graphis built using typed Jimple, then ea
h re
eiver has an inferred type provided byour algorithm, and this is often a tighter type than the type in the signature.This improved type information redu
es the number of possible destinations forthe
all, and provides a better
all graph on whi
h further analysis
an be made.sour
e program
all-graph edges
all-graph edges Redu
tionlanguage name untyped Jimple (#) typed Jimple (#) (%)java: ja
k 10583 10228 3java: java
 26320 23625 10java: jimple 51350 33464 35ada: rudstone 8151 7806 4ei�el: illness 3966 3778 5ml: nu
lei
 5009 4820 4Table 2. Call graph redu
tionTable 2 shows the number of
all-graph edges for both untyped and typedJimple, and the per
ent redu
tion due to using typed Jimple. Again we presenta sele
tion of ben
hmarks from a variety of
ompilers. Note that the very obje
t-oriented ben
hmarks like java
 (10%) and jimple (35%) show signi�
ant re-du
tions if the stati
 type of the re
eiver is known. This means that subsequentanalyses, in
luding run-time type analysis, will start with a signi�
antly betterapproximation of the
all graph. The other ben
hmarks show a redu
tion in the3% to 5% range, whi
h is not as signi�
ant. This is mostly due to the fa
t that

these ben
hmarks have a mu
h simpler
all graph to begin with, and so there isnot mu
h room for improvement.These results serve to illustrate one bene�t of typed Jimple. In fa
t the typesare useful for a wide variety of other analyses in
luding: (1) �nding when aninvokeinterfa
e
an be repla
ed by an invokevirtual
all (i.e. when the inferredtype of the re
eiver is a
lass, but the instru
tion is an invokeinterfa
e), (2)de
iding when a method
an be safely inlined without violating a

ess rules,(3) giving types to variables in de
ompiled
ode, and (4) as a basis for groupingvariables by type (i.e. a
oarse grain run-time type analysis or side-e�e
t analysis
an group variables by de
lared type).8 Related WorkRelated work has been done in the �elds of type inferen
e, typed assembly lan-guages, and de
ompilation.This work is a re�nement of a preliminary report by Gagnon and Hendren[9℄.In our preliminary work we proposed an exponential algorithm to solve diÆ
ult
ases, whereas in this work we avoid the exponential
ase by applying programtransformations, and we introdu
e the 3-stage approa
h. Further, this paperaddresses the problem of assigning di�erent integer types.In [12℄, Knoblo
k and Rehof present a super�
ially similar algorithm to typeJava byte
ode. Their approa
h is di�erent on many aspe
ts. Their algorithmonly works with programs in SSA form. It
onsists of adding new types and
hanging the interfa
e hierar
hy so that every two interfa
es have a LUB and aSUP in the resulting type latti
e. Changing the type hierar
hy has unfortunate
onsequen
es: de
ompiled programs expose a type hierar
hy that di�ers from theoriginal program, the globality of su
h a
hange makes this algorithm useless ina dynami

ode optimizers like HotSpot[22℄. Our algorithm, on the other hand,works with any 3-address
ode representation and has no global side e�e
ts. Itis thus suitable for use in a dynami
 enviroment.Type inferen
e is a well known problem. There has been
onsiderable work ontype inferen
e for modern obje
t-oriented languages. Palsberg and S
hwartzba
hintrodu
ed the basi
 type inferen
e algorithm for Obje
t-Oriented languages [17℄.Subsequent papers on the subje
t extend and improve this initial algorithm [18,1, 2℄. These algorithms infer dynami
 types, i.e. they des
ribe the set of possibletypes that
an o

ur at runtime. Further, most te
hniques need to
onsider thewhole program.As we emphasized in the introdu
tion, our type problem is di�erent in thatwe infer stati
 types. Further, we have a very parti
ular property of having sometype information from the byte
ode, in
luding the types of methods. This meansthat our type inferen
e
an be intra-pro
edural, and just
onsider one methodbody at a time.Work has been done by Morrisett et al.[16℄ on sta
k-based typed assemblylanguage. This work di�ers in that their typed assembly language is dire
tlyprodu
ed from a higher level language. Their work emphasizes the importan
eof having type information to perform aggressive optimizations. We agree that

types are important for optimization, and this is one good reason we need ourtype inferen
e.Our te
hnique is related to the type inferen
e performed by Java de
om-pilers[15, 11, 27, 3℄ and other Java
ompilers that
onvert from byte
ode to C,or other intermediate representations. Proebsting and Watterson have writtena paper[19℄ on de
ompilation in Java. Their paper is mainly fo
used on re
on-stru
tion high-level
ontrol statements from primitive goto bran
hes. In theirtext, they wrongfully dismiss the type inferen
e problem as being solvable bywell known te
hniques similar to the Java veri�er's algorithm. As we have shownin this paper, the problem is NP-Hard in general, and some byte
ode programsrequire program transformations in order to be typeable stati
ally.9 Con
lusionIn this paper we presented a stati
 type inferen
e algorithm for typing Javabyte
ode. We based our methods on a 3-address representation of Java byte
ode
alled Jimple. In e�e
t, we perform the translation of untyped 3-address
ode totyped 3-address
ode, where all lo
al variables have been assigned a stati
 type.We have presented a
onstraint system that
an be used to represent thetype inferen
e problem. Using this representation, we developed a simple, fastand e�e
tive multi-stage algorithm that was shown to handle all methods in aset of programs (and libraries) produ
ed from �ve di�erent sour
e languages. Weemphasized the di�eren
e between well behaved byte
ode as de�ned by the Javaveri�er, and well typed byte
ode, as required by a stati
 typing algorithm. Ourexperimental results show that this eÆ
ient analysis
an signi�
antly improvethe results of further analyzes like Class Hierar
hy Analysis.A
knowledgmentsWe thank Raja Vall�ee-Rai and other Sable resear
h group members for theirwork on developing Jimple and the Soot framework.Referen
es1. Ole Agesen. Constraint-based type inferen
e and parametri
 polymorphism. InBaudouin Le Charlier, editor, SAS'94|Pro
eedings of the First InternationalStati
 Analysis Symposium, volume 864 of Le
ture Notes in Computer S
ien
e,pages 78{100. Springer, September 1994.2. Ole Agesen. The Cartesian produ
t algorithm: Simple and pre
ise type inferen
eof parametri
 polymorphism. In Walter G. Oltho�, editor, ECOOP'95|Obje
t-Oriented Programming, 9th European Conferen
e, volume 952 of Le
ture Notes inComputer S
ien
e, pages 2{26, �Aarhus, Denmark, August 1995. Springer.3. Ahpah Software In
. http://zeus.he.net/~pah/produ
ts.html.4. David F. Ba
on and Peter F. Sweeney. Fast stati
 analysis of C++ virtual fun
tion
alls. In Pro
eedings of the Conferen
e on Obje
t-Oriented Programming Systems,Languages, and Appli
ations, volume 31 of ACM SIGPLAN Noti
es, pages 324{341, New York, O
tober 1996. ACM Press.5. Per Bothner. Kawa -
ompiling dynami
 languages to the Java VM, 1998.

6. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdu
tion toAlgorithms. MIT Press; M
Graw-Hill Book, Cambridge New York, 1990.7. Je�rey Dean, David Grove, and Craig Chambers. Optimization of obje
t-orientedprograms using stati

lass hierar
hy analysis. In Walter G. Oltho�, editor,ECOOP'95|Obje
t-Oriented Programming, 9th European Conferen
e, volume 952of Le
ture Notes in Computer S
ien
e, pages 77{101, �Aarhus, Denmark, August1995. Springer.8. Mary F. Fernandez. Simple and e�e
tive link-time optimization of Modula-3 pro-grams. In Pro
eedings of the ACM SIGPLAN'95 Conferen
e on ProgrammingLanguage Design and Implementation (PLDI), pages 103{115, La Jolla, Califor-nia, June 1995.9. Etienne M. Gagnon and Laurie J. Hendren. Intra-pro
edural inferen
e of stati
types for java byte
ode. Te
hni
al Report Sable 1998-5, M
Gill University, Mon-treal, Canada, O
tober 1998. http://www.sable.m
gill.
a/publi
ations/.10. James Gosling, Bill Joy, and Guy Steele. The Java Language Spe
i�
ation. TheJava Series. Addison-Wesley, 1997.11. Innovative Software. http://world.isg.de.12. T. Knoblo
k and J. Rehof. Type elaboration and subtype
ompletion for Javabyte
ode. In Pro
eedings 27th ACM SIGPLAN-SIGACT Symposium on Prin
iplesof Programming Languages., pages 228{242, January 2000.13. Tim Lindholm and Frank Yellin. The Java Virtual Ma
hine Spe
i�
ation. TheJava Series. Addison-Wesley, Reading, MA, USA, Jannuary 1997.14. MLJ. http://resear
h.persimmon.
o.uk/mlj/.15. Mo
ha. http://www.brouhaha.
om/~eri
/
omputers/mo
ha.html.16. G. Morrisett, K. Crary, N. Glew, and D. Walker. Sta
k-based typed assemblylanguage. Le
ture Notes in Computer S
ien
e, 1473:28{52, 1998.17. Jens Palsberg and Mi
hael I. S
hwartzba
h. Obje
t-Oriented Type Inferen
e. InPro
eedings of the OOPSLA '91 Conferen
e on Obje
t-oriented Programming Sys-tems, Languages and Appli
ations, pages 146{161, November 1991. Published asACM SIGPLAN Noti
es, volume 26, number 11.18. J. Plevyak and A. A. Chien. Pre
ise
on
rete type inferen
e for obje
t-orientedlanguages. ACM SIGPLAN Noti
es, 29(10):324{324, O
tober 1994.19. Todd A. Proebsting and S
ott A. Watterson. Krakatoa: De
ompilation in Java(does byte
ode reveal sour
e?). In USENIX, editor, The Third USENIX Confer-en
e on Obje
t-Oriented Te
hnologies and Systems (COOTS), June 16{19, 1997.Portland, Oregon, pages 185{197, Berkeley, CA, USA, June 1997. USENIX.20. Small Ei�el. http://SmallEi�el.loria.fr/.21. Soot. http://www.sable.m
gill.
a/soot/.22. Sun Mi
rosystems In
. http://java.sun.
om/produ
ts/hotspot/.23. Tu
ker Taft. Programming the Internet in Ada 95. In Alfred Strohmeier, edi-tor, Reliable software te
hnologies, Ada-Europe '96: 1996 Ada-Europe InternationalConferen
e on Reliable Software Te
hnologies, Montreux, Switzerland, June 10{14,1996: pro
eedings, volume 1088, pages 1{16, 1996.24. Jerzy Tiuryn. Subtype inequalities. In Pro
eedings, Seventh Annual IEEE Sympo-sium on Logi
 in Computer S
ien
e, pages 308{315, Santa Cruz, California, June1992. IEEE Computer So
iety Press.25. Raja Vall�ee-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patri
k Lam, andVijay Sundaresan. Soot - a Java byte
ode optimization framework. In Pro
eedingsof CASCON '99, 1999.26. Raja Vall�ee-Rai, Etienne Gagnon, Laurie Hendren, Patri
k Lam, Patri
e Pom-inville, and Vijay Sundaresan. Optimizing Java Byte
ode using the Soot frame-work: It is feasible? In David Watt, editor, CC2000|International Conferen
e onCompiler Constru
tion, pages 18{34, Berlin, Germany, Mar
h 2000.27. WingSoft Corporation. http://www.wingsoft.
om/wingdis.shtml.

